Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation: The Springer International Series in Engineering and Computer Science, cartea 314
Autor Jouke Annemaen Limba Engleză Hardback – 31 mai 1995
Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips.
Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation.
Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 613.80 lei 43-57 zile | |
| Springer Us – 13 iul 2013 | 613.80 lei 43-57 zile | |
| Hardback (1) | 619.75 lei 43-57 zile | |
| Springer Us – 31 mai 1995 | 619.75 lei 43-57 zile |
Din seria The Springer International Series in Engineering and Computer Science
- 20%
Preț: 618.64 lei - 18%
Preț: 1177.92 lei - 18%
Preț: 921.36 lei - 20%
Preț: 615.32 lei - 18%
Preț: 906.17 lei - 20%
Preț: 621.64 lei - 15%
Preț: 612.85 lei - 20%
Preț: 618.96 lei - 18%
Preț: 912.40 lei - 20%
Preț: 619.58 lei - 20%
Preț: 950.07 lei - 20%
Preț: 621.01 lei - 18%
Preț: 910.11 lei - 20%
Preț: 950.72 lei - 18%
Preț: 919.85 lei - 20%
Preț: 620.07 lei - 15%
Preț: 617.89 lei - 18%
Preț: 913.32 lei - 18%
Preț: 1173.85 lei - 18%
Preț: 920.45 lei - 15%
Preț: 619.12 lei - 18%
Preț: 911.64 lei - 18%
Preț: 910.58 lei - 20%
Preț: 1234.64 lei - 20%
Preț: 1715.99 lei - 20%
Preț: 1235.72 lei - 20%
Preț: 945.61 lei -
Preț: 376.90 lei - 20%
Preț: 608.65 lei - 18%
Preț: 1186.41 lei - 20%
Preț: 625.58 lei - 20%
Preț: 1229.54 lei - 15%
Preț: 613.94 lei
Preț: 619.75 lei
Preț vechi: 729.11 lei
-15%
Puncte Express: 930
Preț estimativ în valută:
109.60€ • 128.62$ • 95.06£
109.60€ • 128.62$ • 95.06£
Carte tipărită la comandă
Livrare economică 09-23 martie
Specificații
ISBN-13: 9780792395676
ISBN-10: 0792395670
Pagini: 238
Ilustrații: XIII, 238 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.54 kg
Ediția:1995
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 0792395670
Pagini: 238
Ilustrații: XIII, 238 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.54 kg
Ediția:1995
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 2 The Vector Decomposition Method.- 3 Dynamics of Single Layer Nets.- 4 Unipolar Input Signals in Single-Layer Feed-Forward Neural Networks.- 5 Cross-talk in Single-Layer Feed-Forward Neural Networks.- 6 Precision Requirements for Analog Weight Adaptation Circuitry for Single-Layer Nets.- 7 Discretization of Weight Adaptations in Single-Layer Nets.- 8 Learning Behavior and Temporary Minima of Two-Layer Neural Networks.- 9 Biases and Unipolar Input signals for Two-Layer Neural Networks.- 10 Cost Functions for Two-Layer Neural Networks.- 11 Some issues for f’ (x).- 12 Feed-forward hardware.- 13 Analog weight adaptation hardware.- 14 Conclusions.- Nomenclature.