Cantitate/Preț
Produs

Exploring Macroscopic Quantum Mechanics in Optomechanical Devices: Springer Theses

Autor Haixing Miao
en Limba Engleză Hardback – 13 ian 2012
Recent state-of-the-art technologies in fabricating low-loss optical and mechanical components have significantly motivated the study of quantum-limited measurements with optomechanical devices. Such research is the main subject of this thesis. In the first part, the author considers various approaches for surpassing the standard quantum limit for force measurements. In the second part, the author proposes different experimental protocols for using optomechanical interactions to explore quantum behaviors of macroscopic mechanical objects. Even though this thesis mostly focuses on large-scale laser interferometer gravitational-wave detectors and related experiments, the general approaches apply equally well for studying small-scale optomechanical devices.
The author is the winner of the 2010 Thesis prize awarded by the Gravitational Wave International Committee.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61255 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 22 feb 2014 61255 lei  6-8 săpt.
Hardback (1) 61695 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 13 ian 2012 61695 lei  6-8 săpt.

Din seria Springer Theses

Preț: 61695 lei

Preț vechi: 72582 lei
-15% Nou

Puncte Express: 925

Preț estimativ în valută:
10919 12805$ 9574£

Carte tipărită la comandă

Livrare economică 24 ianuarie-07 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642256394
ISBN-10: 3642256392
Pagini: 220
Ilustrații: XXII, 206 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.45 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Theses

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- 2 Quantum Theory of Gravitational-Wave Detectors.- 3 Modifying Input Optics: Double Squeezed-input.- 4 Modifying Test-Mass Dynamics: Double Optical Spring.- 5 Measuring a Conserved Quantity: Variational Quadrature Readout.- 6 MQM with Three-Mode Optomechanical Interactions.- 7 Achieving the Ground State and Enhancing Optomechanical Entanglement.- 8 Universal Entanglement Between an Oscillator and Continuous Fields.- 9 Nonlinear Optomechanical System for Probing Mechanical Energy Quantization.- 10 State Preparation: Non-Gaussian Quantum State.- 11 Probing Macroscopic Quantum States.- 12 Conclusions and Future Work.- 13 List of Publications.- Bibliography.

Notă biografică

Dr Haixing Miao was awarded the very rare "PhD with Distinction" from University of Western Australia. He is the winner of the 2010 GWIC (Gravitational Wave International Committee) Thesis prize.

Textul de pe ultima copertă

Recent state-of-the-art technologies in fabricating low-loss optical and mechanical components have significantly motivated the study of quantum-limited measurements with optomechanical devices. Such research is the main subject of this thesis. In the first part, the author considers various approaches for surpassing the standard quantum limit for force measurements. In the second part, the author proposes different experimental protocols for using optomechanical interactions to explore quantum behaviors of macroscopic mechanical objects. Even though this thesis mostly focuses on large-scale laser interferometer gravitational-wave detectors and related experiments, the general approaches apply equally well for studying small-scale optomechanical devices.
The author is the winner of the 2010 Thesis prize awarded by the Gravitational Wave International Committee.

Caracteristici

An outstanding PhD thesis showing that advanced gravitational wave detectors are ideal instruments to explore the quantum mechanical nature of their macroscipic test masses The author was awarded the 2010 GWIC (Gravitational Wave International Committee) Thesis prize Includes supplementary material: sn.pub/extras

Descriere

In the second part, the author proposes different experimental protocols for using optomechanical interactions to explore quantum behaviors of macroscopic mechanical objects. Even though this thesis mostly focuses on large-scale laser interferometer gravitational-wave detectors and related experiments, the general approaches apply equally well for studying small-scale optomechanical devices.The author is the winner of the 2010 Thesis prize awarded by the Gravitational Wave International Committee.