Cantitate/Preț
Produs

Discrete Mathematics for Data Science

Autor Jack Pope
en Limba Engleză Paperback – 31 mar 2026
Discrete Mathematics for Data Science provides an early course in both Data Science and Discrete Mathematics, focusing on how a deeper understanding of the former can unlock a more effective implementation of the latter. Students of Data Science come from a variety of disciplines, with Business, Statistics, Computer Science, Economics, and Psychology among the departments offering courses on the subject. Therefore, for many students, Data Science is considered a means of insight into a particular field of interest, with the study of its underlying discrete mathematics not a primary objective.
This book covers the topics of Discrete Mathematical Structures relevant to students of Data Science, offering a relevant and gentle introduction to both the theoretical and practical elements required to be a successful data scientist. The relaxed, accessible style makes it a perfect textbook for undergraduates.
Features
  • Numerous exercises and examples
  • Ideal as a textbook for a Discrete Mathematics course for data science and computer science students
  • Source code and solutions provided as a supplementary resource
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 34547 lei  Precomandă
  CRC Press – 31 mar 2026 34547 lei  Precomandă
Hardback (1) 98143 lei  Precomandă
  CRC Press – apr 2026 98143 lei  Precomandă

Preț: 34547 lei

Preț vechi: 44432 lei
-22% Precomandă

Puncte Express: 518

Preț estimativ în valută:
6107 7325$ 5309£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Specificații

ISBN-13: 9781032687735
ISBN-10: 1032687738
Pagini: 404
Ilustrații: 144
Dimensiuni: 156 x 234 mm
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC

Public țintă

Undergraduate Advanced

Cuprins

List of Figures List of Tables Preface Section I Problem Solving. Chapter 1 Your Mind: A Programming Environment. Section II Elements. Chapter 2 Atoms & Abstractions. Chapter 3 Numbers. Chapter 4 Number Conversion. Chapter 5 Digital Arithmetic & Logic. Section III Computational Logic. Chapter 6 Propositional Logic. Chapter 7 Set Quantification. Chapter 8 Proof. Chapter 9 Computability. Section IV Functions. Chapter 10 Functions & Abstractions. Chapter 11 Repetition & Recursion. Chapter 12 Lambda Calculus. Chapter 13  Algorithm Complexity. Section V Data Organization. Chapter 14 Data Organization. Chapter 15 Unconnected Data. Chapter 16 Linear Structures. Chapter 17 Branched Structures. Section VI Data Analysis. Chapter 18 Counting: Permutations & Combinations. Chapter 19  Probability & Statistics. Chapter 20 Multivariate Analysis. Chapter 21 Resampling. Chapter 22 Information Theory. Chapter 23 Data Dimensions. Section VII Appendix Appendix A. Appendix B. Appendix C.

Notă biografică

Jack Pope has wrangled financial data since Big Data meant a big pile of floppy disks. He works at Investment Economics (aka, System Goats) providing system configuration, guidance, and training for organizations interested in data science infrastructure. He is also department coordinator for Computer Science and Data Science at North Hennepin Community College and chairman of the Twin Cities IEEE Computer Society.

Descriere

Discrete Mathematics for Data Science provides an early course in both Data Science and Discrete Mathematics, focusing on how a deeper understanding of the former can unlock a more effective implementation of the latter.