Conjugate Direction Methods in Optimization
Autor M. R. Hestenesen Limba Engleză Paperback – 31 mai 2013
Preț: 910.98 lei
Preț vechi: 1110.94 lei
-18% Nou
Puncte Express: 1366
Preț estimativ în valută:
161.18€ • 187.77$ • 140.75£
161.18€ • 187.77$ • 140.75£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461260509
ISBN-10: 1461260507
Pagini: 336
Ilustrații: X, 325 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 1461260507
Pagini: 336
Ilustrații: X, 325 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Newton’s Method and the Gradient Method.- 1 Introduction.- 2 Fundamental Concepts.- 3 Iterative Methods for Solving g(x) = 0.- 4 Convergence Theorems.- 5 Minimization of Functions by Newton’s Method.- 6 Gradient Methods—The Quadratic Case.- 7 General Descent Methods.- 8 Iterative Methods for Solving Linear Equations.- 9 Constrained Minima.- II Conjugate Direction Methods.- 1 Introduction.- 2 Quadratic Functions on En.- 3 Basic Properties of Quadratic Functions.- 4 Minimization of a Quadratic Function F on k-Planes.- 5 Method of Conjugate Directions (CD-Method).- 6 Method of Conjugate Gradients (CG-Algorithm).- 7 Gradient PARTAN.- 8 CG-Algorithms for Nonquadratic Functions.- 9 Numerical Examples.- 10 Least Square Solutions.- III Conjugate Gram-Schmidt Processes.- 1 Introduction.- 2 A Conjugate Gram-Schmidt Process.- 3 CGS-CG-Algorithms.- 4 A Connection of CGS-Algorithms with Gaussian Elimination.- 5 Method of Parallel Displacements.- 6 Methods of Parallel Planes (PARP).- 7 Modifications of Parallel Displacements Algorithms.- 8 CGS-Algorithms for Nonquadratic Functions.- 9 CGS-CG-Routines for Nonquadratic Functions.- 10 Gauss-Seidel CGS-Routines.- 11 The Case of Nonnegative Components.- 12 General Linear Inequality Constraints.- IV Conjugate Gradient Algorithms.- 1 Introduction.- 2 Conjugate Gradient Algorithms.- 3 The Normalized CG-Algorithm.- 4 Termination.- 5 Clustered Eigenvalues.- 6 Nonnegative Hessians.- 7 A Planar CG-Algorithm.- 8 Justification of the Planar CG-Algorithm.- 9 Modifications of the CG-Algorithm.- 10 Two Examples.- 11 Connections between Generalized CG-Algorithms and Stadard CG- and CD-Algorithm.- 12 Least Square Solutions.- 13 Variable Metric Algorithms.- 14 A Planar CG-Algorithm for Nonquadratic Functions.- References.