Computational Methods for Time-Series Analyses in Earth Sciences
Autor Silvio José Gumiere, Hossein Bonakdarien Limba Engleză Paperback – 10 iul 2025
Computational Methods for Time-Series Analyses in Earth Sciences is a valuable resource for scientists, researchers, and students delving into the intricacies of Earth's environmental patterns and cycles through the lens of computational analysis and guides readers through various computational approaches to deciphering spatial and temporal data.
- Focuses on the use of R for time-series analysis and the application of these methods directly to Earth and environmental datasets
- Integrates Machine Learning techniques, enabling readers to explore advanced computational methods for forecasting and modeling
- Includes case studies with real-world applications, providing readers with examples on how to translate computational skills into tangible outcomes
Preț: 837.89 lei
Preț vechi: 920.77 lei
-9% Nou
Puncte Express: 1257
Preț estimativ în valută:
148.27€ • 173.86$ • 130.21£
148.27€ • 173.86$ • 130.21£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443336317
ISBN-10: 0443336318
Pagini: 730
Dimensiuni: 152 x 229 mm
Greutate: 1.12 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443336318
Pagini: 730
Dimensiuni: 152 x 229 mm
Greutate: 1.12 kg
Editura: ELSEVIER SCIENCE
Cuprins
Section 1: Theory and Computational Methods
1. Introduction to R: Data manipulation, graphics, and sampling
2. Time series analysis for earth sciences with R
3. Signal processing with R for earth sciences.
4. Spatial Analyses with R for earth sciences
5. Deterministic modelling with R for earth sciences
6. Machine learning with R for earth sciences
Section 2: Case of Studies and Applications
7. Predicting Sandy Soils' Hydraulic Properties and Drainage Capacities with Neural Networks
8. Prognostication of Real-Time Hourly Precipitation using Kernel-based Techniques
9. Integrating Upstream Runoff and Local Rainfall for Real-Time Flood Prediction
10. Pre-diagnosis of Flooding Using Real-Time Monitoring of Climate Parameters
11. Comparing Local vs. External Data Analysis for Forecasting
12. Evolutionary Kernel Extreme Learning Machine for Real-Time Forecasting
13. A Stochastic AI Method for Predicting Climatic Variables' Spatio-Temporal Changes Under Future Climates – Data Preparation and Preprocessing
14. A Novel AI Stochastic Approach for Predicting Spatio-Temporal Variables and Changes Under Future Climate Conditions: Google Earth Engine's Benefits and Challenges; An Intro to SOILPARAM APP
15. A Novel AI Stochastic Method for Predicting Changes in Space and Time: Linear Modeling
16. A Novel AI Stochastic Method for Predicting Changes: Nonlinear Modeling
17. A Combination of Satellite Observations and Machine Learning Technique for Terrestrial Anomaly Estimation
1. Introduction to R: Data manipulation, graphics, and sampling
2. Time series analysis for earth sciences with R
3. Signal processing with R for earth sciences.
4. Spatial Analyses with R for earth sciences
5. Deterministic modelling with R for earth sciences
6. Machine learning with R for earth sciences
Section 2: Case of Studies and Applications
7. Predicting Sandy Soils' Hydraulic Properties and Drainage Capacities with Neural Networks
8. Prognostication of Real-Time Hourly Precipitation using Kernel-based Techniques
9. Integrating Upstream Runoff and Local Rainfall for Real-Time Flood Prediction
10. Pre-diagnosis of Flooding Using Real-Time Monitoring of Climate Parameters
11. Comparing Local vs. External Data Analysis for Forecasting
12. Evolutionary Kernel Extreme Learning Machine for Real-Time Forecasting
13. A Stochastic AI Method for Predicting Climatic Variables' Spatio-Temporal Changes Under Future Climates – Data Preparation and Preprocessing
14. A Novel AI Stochastic Approach for Predicting Spatio-Temporal Variables and Changes Under Future Climate Conditions: Google Earth Engine's Benefits and Challenges; An Intro to SOILPARAM APP
15. A Novel AI Stochastic Method for Predicting Changes in Space and Time: Linear Modeling
16. A Novel AI Stochastic Method for Predicting Changes: Nonlinear Modeling
17. A Combination of Satellite Observations and Machine Learning Technique for Terrestrial Anomaly Estimation