Computational Issues in High Performance Software for Nonlinear Optimization
Editat de Almerico Murli, Gerardo Toraldoen Limba Engleză Paperback – 21 mar 2013
Computational Issues in High Performance Software for Nonlinear Research serves as an excellent reference, providing insight into some of the most important research issues in the field.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 902.09 lei 6-8 săpt. | |
| Springer Us – 21 mar 2013 | 902.09 lei 6-8 săpt. | |
| Hardback (1) | 907.70 lei 6-8 săpt. | |
| Springer Us – 31 ian 1997 | 907.70 lei 6-8 săpt. |
Preț: 902.09 lei
Preț vechi: 1100.11 lei
-18%
Puncte Express: 1353
Preț estimativ în valută:
159.65€ • 186.58$ • 138.61£
159.65€ • 186.58$ • 138.61£
Carte tipărită la comandă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781475784398
ISBN-10: 1475784392
Pagini: 168
Ilustrații: IV, 158 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 1475784392
Pagini: 168
Ilustrații: IV, 158 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
A Comparison of Large Scale Mixed Complementarity Problem Solvers.- Impact of Partial Separability on Large-Scale Optimization.- On the Number of Inner Iterations Per Outer Iteration of a Globally Convergent Algorithm for Optimization with General Nonlinear Inequality Constraints and Simple Bounds.- Numerical Experiences with New Truncated Newton Methods in Large Scale Unconstrained Optimization.- Sparse Linear Least Squares Problems in Optimization.- Simulated Annealing and Genetic Algorithms for the Facility Layout Problem: A Survey.- Sequential Quadratic Programming Methods for Large-Scale Problems.- A Scalable Parallel Interior Point Algorithm for Stochastic Linear Programming and Robust Optimization.