Complexity Theory of Real Functions: Progress in Theoretical Computer Science
Autor K. Koen Limba Engleză Paperback – 13 mar 2012
Din seria Progress in Theoretical Computer Science
- 20%
Preț: 620.07 lei - 20%
Preț: 620.52 lei - 20%
Preț: 625.45 lei - 20%
Preț: 650.42 lei - 20%
Preț: 961.50 lei - 20%
Preț: 624.95 lei - 20%
Preț: 623.22 lei - 20%
Preț: 630.68 lei - 20%
Preț: 632.89 lei - 20%
Preț: 621.32 lei - 20%
Preț: 625.58 lei - 20%
Preț: 570.78 lei - 20%
Preț: 949.94 lei -
Preț: 365.45 lei - 20%
Preț: 673.60 lei - 15%
Preț: 562.39 lei -
Preț: 363.99 lei -
Preț: 371.93 lei -
Preț: 370.84 lei - 15%
Preț: 519.46 lei
Preț: 567.12 lei
Preț vechi: 708.90 lei
-20% Nou
Puncte Express: 851
Preț estimativ în valută:
100.35€ • 117.83$ • 88.08£
100.35€ • 117.83$ • 88.08£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781468468045
ISBN-10: 1468468049
Pagini: 324
Ilustrații: X, 310 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Theoretical Computer Science
Locul publicării:Boston, MA, United States
ISBN-10: 1468468049
Pagini: 324
Ilustrații: X, 310 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Theoretical Computer Science
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Mathematics background.- Notation.- 1 Basics in Discrete Complexity Theory.- 1.1 Models of computation and complexity classes.- 1.2 NP-completeness.- 1.3 Polynomial-time hierarchy.- 1.4 Relativization.- 1.5 Probabilistic complexity classes.- 1.6 Complexity of counting.- 1.7 One-way functions.- 1.8 Polynomial-size circuits and sparse sets.- 2 Computational Complexity of Real Functions.- 2.1 Computable real numbers.- 2.2 Complexity of computable real numbers.- 2.3 Computable real functions.- 2.4 Complexity of computable real functions.- 2.5 Computable multi-dimensional functions.- 2.6 Partial computable real functions and recursively open sets.- 2.7 Computable numerical operators.- 3 Maximization.- 3.1 Computability of the maximum points.- 3.2 Maximization and nondeterminism.- 3.3 Maximum values and NP real numbers.- 3.4 Complexity of NP real numbers.- 3.5 Maximization and NP real functions.- 3.6 Hierarchy of min-max operations.- 3.7 Complexity of NP real functions.- 3.8 Open questions.- 4 Roots and Inverse Functions.- 4.1 Computability of roots.- 4.2 Complexity of roots and inverse modulus of continuity.- 4.3 Complexity of roots and differentiability.- 4.4 Log-space computable real functions.- 4.5 Log-space computability of roots of one-to-one functions.- 4.8 Open questions.- 5 Measure and Integration.- 5.1 Recursive measure theory.- 5.2 Polynomial-time approximation.- 5.3 Polynomial-time approximation and probabilistic computation.- 5.4 Complexity of integration.- 5.5 Open questions.- 6 Differentiation.- 6.1 Computability of derivatives.- 6.2 Derivatives of analytic functions.- 6.3 Functions of bounded variations.- 7 Ordinary Differential Equations.- 7.1 ODEs without the Lipschitz condition.- 7.2 ODEs with the Lipschitz condition: upper bound.- 7.3 ODEs with the Lipschitz condition: lower bound.- 7.4 Open questions.- 8 Approximation by Polynomials.- 8.1 Polynomial Version of the Weierstrass approximation theorem.- 8.2 Best Chebyshev approximation: complexity of the errors.- 8.3 Best Chebyshev approximation: complexity of the approximation functions.- 9 An Optimization Problem in Control Theory.- 9.1 A discrete version.- 9.2 The basic construction.- 9.3 The complexity of LCTEAM.