Boundary Value Problems of Finite Elasticity: Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data: Springer Tracts in Natural Philosophy, cartea 31
Autor Tullio Valenten Limba Engleză Paperback – 17 sep 2011
Din seria Springer Tracts in Natural Philosophy
-
Preț: 364.56 lei -
Preț: 375.07 lei -
Preț: 361.95 lei -
Preț: 470.88 lei -
Preț: 368.79 lei -
Preț: 371.93 lei -
Preț: 371.37 lei -
Preț: 368.79 lei -
Preț: 363.99 lei -
Preț: 366.19 lei -
Preț: 365.09 lei -
Preț: 368.05 lei -
Preț: 363.26 lei -
Preț: 365.45 lei -
Preț: 378.78 lei -
Preț: 361.78 lei -
Preț: 467.59 lei -
Preț: 385.63 lei - 20%
Preț: 608.66 lei -
Preț: 375.81 lei -
Preț: 376.75 lei -
Preț: 436.47 lei -
Preț: 406.24 lei - 15%
Preț: 606.10 lei - 15%
Preț: 553.26 lei -
Preț: 363.26 lei -
Preț: 368.05 lei -
Preț: 365.45 lei - 15%
Preț: 606.87 lei - 15%
Preț: 609.85 lei - 15%
Preț: 613.18 lei - 18%
Preț: 756.38 lei -
Preț: 377.12 lei -
Preț: 335.80 lei -
Preț: 371.57 lei -
Preț: 365.09 lei -
Preț: 364.19 lei - 15%
Preț: 622.59 lei -
Preț: 363.78 lei
Preț: 368.59 lei
Nou
Puncte Express: 553
Preț estimativ în valută:
65.21€ • 75.97$ • 56.95£
65.21€ • 75.97$ • 56.95£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461283263
ISBN-10: 1461283264
Pagini: 208
Ilustrații: XII, 191 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:New York, NY, United States
ISBN-10: 1461283264
Pagini: 208
Ilustrații: XII, 191 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Springer Tracts in Natural Philosophy
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. A Brief Introduction to Some General Concepts in Elasticity.- §1. Some Notations.- §2. Deformations and Motions.- §3. Mass. Force.- §4. Euler’s Axiom. Cauchy’s Theorem.- §5. Constitutive Assumptions. Elastic Body.- §6. Frame-Indifference of the Material Response.- II. Composition Operators in Sobolev and Schauder Spaces. Theorems on Continuity, Differentiability, and Analyticity.- §1. Some Facts About Sobolev and Schauder Spaces.- §2. A Property of Multiplication in Sobolev Spaces.- §3. On Continuity of Composition Operators in Sobolev and Schauder Spaces.- §4. On Differentiability of Composition Operators in Sobolev and Schauder Spaces.- §5. On Analyticity of Composition Operators in Sobolev and Schauder Spaces.- §6. A Theorem on Failure of Differentiability for Composition Operators.- III. Dirichlet and Neumann Boundary Problems in Linearized Elastostatics. Existence, Uniqueness, and Regularity.- §1. Korn’s Inequalities.- §2. A Generalization of a Theorem of Lax and Milgram.- §3. Linearized Elastostatics.- §4. The Dirichlet Problem in Linearized Elastostatics. Existence and Uniqueness in W1,p(?, ?n).- §5. The Neumann Problem in Linearized Elastostatics. Existence and Uniqueness in W1,p(?, ? n).- §6. Some Basic Inequalities for Elliptic Operators.- §7. Regularity Theorems for Dirichlet and Neumann Problems in Linearized Elastostatics.- IV. Boundary Problems of Place in Finite Elastostatics.- §1. Formulation of the Problem.- §2. Remarks on Admissibility of a Linearization.- §3. A Topological Property of Sets of Admissible Deformations.- §4. Local Theorems on Existence, Uniqueness, and Analytic Dependence on f for Problem ((1.1), (1.3)).- §5. Stronger Results on Existence and Uniqueness for Problem ((1.1), (1.3)).- §6. LocalTheorems on Existence and Uniqueness for Problem ((1.1), (1.2)).- V. Boundary Problems of Traction in Finite Elastostatics. An Abstract Method. The Special Case of Dead Loads.- §1. Generality on the Traction Problem in Finite Elastostatics.- §2. Preliminary Discussion.- §3. A Basic Lemma.- §4. Critical Infinitesimal Rigid Displacements for a Load.- §5. A Local Theorem on Existence, Uniqueness, and Analytic Dependence on a Parameter.- §6. The Case of Dead Loads.- §7. Some Historical Notes.- VI. Boundary Problems of Pressure Type in Finite Elastostatics.- §1. Preliminaries.- §2. The Case When the Load Is Invariant Under Translations.- §3. The Case When the Load Is Invariant Under Rotations.- §4. The Case of a Heavy Elastic Body Submerged in a Quiet Heavy Liquid.- Appendix I. On Analytic Mappings Between Banach Spaces. Analytic Implicit Function Theorem.- Appendix II. On the Representation of Orthogonal Matrices.- Index of Notations.