Bayesian Filtering and Smoothing: Institute of Mathematical Statistics Textbooks
Autor Simo Särkkä, Lennart Svenssonen Limba Engleză Paperback – 15 iun 2023
Din seria Institute of Mathematical Statistics Textbooks
-
Preț: 257.54 lei -
Preț: 320.72 lei -
Preț: 320.25 lei - 11%
Preț: 626.60 lei -
Preț: 322.41 lei -
Preț: 324.56 lei -
Preț: 319.22 lei -
Preț: 280.81 lei -
Preț: 321.63 lei -
Preț: 361.17 lei -
Preț: 322.58 lei -
Preț: 357.31 lei -
Preț: 276.37 lei -
Preț: 322.16 lei -
Preț: 319.48 lei
Preț: 298.10 lei
Nou
Puncte Express: 447
Preț estimativ în valută:
52.74€ • 61.45$ • 46.06£
52.74€ • 61.45$ • 46.06£
Carte disponibilă
Livrare economică 29 decembrie 25 - 12 ianuarie 26
Livrare express 12-18 decembrie pentru 41.47 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781108926645
ISBN-10: 1108926649
Pagini: 438
Dimensiuni: 152 x 224 x 27 mm
Greutate: 0.62 kg
Ediția:Nouă
Editura: Cambridge University Press
Seria Institute of Mathematical Statistics Textbooks
Locul publicării:New York, United States
ISBN-10: 1108926649
Pagini: 438
Dimensiuni: 152 x 224 x 27 mm
Greutate: 0.62 kg
Ediția:Nouă
Editura: Cambridge University Press
Seria Institute of Mathematical Statistics Textbooks
Locul publicării:New York, United States
Cuprins
Symbols and abbreviations; 1. What are Bayesian filtering and smoothing?; 2. Bayesian inference; 3. Batch and recursive Bayesian estimation; 4. Discretization of continuous-time dynamic models; 5. Modeling with state space models; 6. Bayesian filtering equations and exact solutions; 7. Extended Kalman filtering; 8. General Gaussian filtering; 9. Gaussian filtering by enabling approximations; 10. Posterior linearization filtering; 11. Particle filtering; 12. Bayesian smoothing equations and exact solutions; 13. Extended Rauch-Tung-Striebel smoothing; 14. General Gaussian smoothing; 15. Particle smoothing; 16. Parameter estimation; 17. Epilogue; Appendix. Additional material; References; Index.
Recenzii
'The book represents an excellent treatise of non-linear filtering from a Bayesian perspective. It has a nice balance between details and breadth, and it provides a nice journey from the basics of Bayesian inference to sophisticated filtering methods.' Petar M. Djurić, Stony Brook
'An excellent and pedagogical treatment of the complex world of nonlinear filtering. It is very valuable for both researchers and practitioners.' Lennart Ljung, Linköping University
'An excellent and pedagogical treatment of the complex world of nonlinear filtering. It is very valuable for both researchers and practitioners.' Lennart Ljung, Linköping University
Descriere
A Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.