An Introduction to Complex Function Theory: Undergraduate Texts in Mathematics
Autor Bruce P. Palkaen Limba Engleză Paperback – 30 sep 2012
Din seria Undergraduate Texts in Mathematics
- 17%
Preț: 391.86 lei - 17%
Preț: 395.44 lei -
Preț: 409.58 lei - 15%
Preț: 396.08 lei -
Preț: 439.45 lei - 15%
Preț: 436.16 lei - 17%
Preț: 387.00 lei -
Preț: 420.68 lei - 17%
Preț: 426.71 lei -
Preț: 295.50 lei -
Preț: 372.67 lei -
Preț: 421.63 lei -
Preț: 373.98 lei -
Preț: 417.34 lei - 15%
Preț: 395.48 lei -
Preț: 418.67 lei -
Preț: 387.48 lei -
Preț: 419.86 lei - 15%
Preț: 394.77 lei - 15%
Preț: 452.05 lei -
Preț: 387.05 lei -
Preț: 396.81 lei -
Preț: 371.58 lei -
Preț: 427.55 lei - 15%
Preț: 427.08 lei -
Preț: 393.40 lei -
Preț: 388.98 lei - 15%
Preț: 494.55 lei - 17%
Preț: 392.45 lei -
Preț: 458.95 lei -
Preț: 299.21 lei - 15%
Preț: 429.75 lei -
Preț: 448.76 lei -
Preț: 382.64 lei -
Preț: 381.19 lei -
Preț: 375.27 lei - 15%
Preț: 501.01 lei -
Preț: 386.74 lei - 15%
Preț: 511.29 lei - 15%
Preț: 430.65 lei - 15%
Preț: 513.01 lei -
Preț: 375.27 lei - 15%
Preț: 553.26 lei - 15%
Preț: 444.21 lei - 15%
Preț: 433.19 lei -
Preț: 376.75 lei -
Preț: 390.54 lei -
Preț: 470.62 lei - 15%
Preț: 517.73 lei
Preț: 466.48 lei
Preț vechi: 548.80 lei
-15% Nou
Puncte Express: 700
Preț estimativ în valută:
82.53€ • 96.15$ • 72.07£
82.53€ • 96.15$ • 72.07£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461269670
ISBN-10: 1461269679
Pagini: 584
Ilustrații: XVII, 560 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.81 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461269679
Pagini: 584
Ilustrații: XVII, 560 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.81 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
I The Complex Number System.- 1 The Algebra and Geometry of Complex Numbers.- 2 Exponentials and Logarithms of Complex Numbers.- 3 Functions of a Complex Variable.- 4 Exercises for Chapter I.- II The Rudiments of Plane Topology.- 1 Basic Notation and Terminology.- 2 Continuity and Limits of Functions.- 3 Connected Sets.- 4 Compact Sets.- 5 Exercises for Chapter II.- III Analytic Functions.- 1 Complex Derivatives.- 2 The Cauchy-Riemann Equations.- 3 Exponential and Trigonometric Functions.- 4 Branches of Inverse Functions.- 5 Differentiability in the Real Sense.- 6 Exercises for Chapter III.- IV Complex Integration.- 1 Paths in the Complex Plane.- 2 Integrals Along Paths.- 3 Rectiflable Paths.- 4 Exercises for Chapter IV.- V Cauchy’s Theorem and its Consequences.- 1 The Local Cauchy Theorem.- 2 Winding Numbers and the Local Cauchy Integral Formula.- 3 Consequences of the Local Cauchy Integral Formula.- 4 More About Logarithm and Power Functions.- 5 The Global Cauchy Theorems.- 6 SimplyConnected Domains.- 7 Homotopy and Winding Numbers.- 8 Exercises for Chapter V.- VI Harmonic Functions.- 1 Harmonic Functions.- 2 The Mean Value Property.- 3 The Dirichlet Problem for a Disk.- 4 Exercises for Chapter VI.- VII Sequences and Series of Analytic Functions.- 1 Sequences of Functions.- 2 Infinite Series.- 3 Sequences and Series of Analytic Functions.- 4 Normal Families.- 5 Exercises for Chapter VII.- VIII Isolated Singularities of Analytic Functions.- 1 Zeros of Analytic Functions.- 2 Isolated Singularities.- 3 The Residue Theorem and its Consequences.- 4 Function Theory on the Extended Plane.- 5 Exercises for Chapter VIII.- IX Conformal Mapping.- 1 Conformal Mappings.- 2 Möbius Transformations.- 3 Riemann’s Mapping Theorem.- 4 The Caratheodory-Osgood Theorem.- 5 Conformal Mappings onto Polygons.- 6 Exercises for Chapter IX.- X Constructing Analytic Functions.- 1 The Theorem of Mittag-Leffler.- 2 The Theorem of Weierstrass.- 3 Analytic Continuation.- 4 Exercises for ChapterX.- Appendix A Background on Fields.- 1 Fields.- 1.1 The Field Axioms.- 1.2 Subfields.- 1.3 Isomorphic Fields.- 2 Order in Fields.- 2.1 Ordered Fields.- 2.2 Complete Ordered Fields.- 2.3 Implications for Real Sequences.- Appendix B Winding Numbers Revisited.- 1 Technical Facts About Winding Numbers.- 1.1 The Geometric Interpretation.- 1.2 Winding Numbers and Jordan Curves.