Algebraic Topology: A First Course
Autor William Fultonen Limba Engleză Paperback – 27 iul 1995
Preț: 350.49 lei
Puncte Express: 526
Preț estimativ în valută:
62.05€ • 72.25$ • 53.90£
62.05€ • 72.25$ • 53.90£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387943275
ISBN-10: 0387943277
Pagini: 430
Ilustrații: XVIII, 430 p. 13 illus.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.64 kg
Ediția:1995
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 0387943277
Pagini: 430
Ilustrații: XVIII, 430 p. 13 illus.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.64 kg
Ediția:1995
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
I Calculus in the Plane.- 1 Path Integrals.- 2 Angles and Deformations.- II Winding Numbers.- 3 The Winding Number.- 4 Applications of Winding Numbers.- III Cohomology and Homology, I.- 5 De Rham Cohomology and the Jordan Curve Theorem.- 6 Homology.- IV Vector Fields.- 7 Indices of Vector Fields.- 8 Vector Fields on Surfaces.- V Cohomology and Homology, II.- 9 Holes and Integrals.- 10 Mayer—Vietoris.- VI Covering Spaces and Fundamental Groups, I.- 11 Covering Spaces.- 12 The Fundamental Group.- VII Covering Spaces and Fundamental Groups, II.- 13 The Fundamental Group and Covering Spaces.- 14 The Van Kampen Theorem.- VIII Cohomology and Homology, III.- 15 Cohomology.- 16 Variations.- IX Topology of Surfaces.- 17 The Topology of Surfaces.- 18 Cohomology on Surfaces.- X Riemann Surfaces.- 19 Riemann Surfaces.- 20 Riemann Surfaces and Algebraic Curves.- 21 The Riemann—Roch Theorem.- XI Higher Dimensions.- 22 Toward Higher Dimensions.- 23 Higher Homology.- 24 Duality.- Appendices.- Appendix A Point Set Topology.- A1. Some Basic Notions in Topology.- A2. Connected Components.- A3. Patching.- A4. Lebesgue Lemma.- Appendix B Analysis.- B1. Results from Plane Calculus.- B2. Partition of Unity.- Appendix C Algebra.- C1. Linear Algebra.- C2. Groups; Free Abelian Groups.- C3. Polynomials; Gauss’s Lemma.- Appendix D On Surfaces.- D1. Vector Fields on Plane Domains.- D2. Charts and Vector Fields.- D3. Differential Forms on a Surface.- Appendix E Proof of Borsuk’s Theorem.- Hints and Answers.- References.- Index of Symbols.