Algebraic Structures and Operators Calculus
Autor P. Feinsilver, René Schotten Limba Engleză Hardback – 31 dec 1995
Preț: 539.39 lei
Preț vechi: 586.30 lei
-8% Nou
Puncte Express: 809
Preț estimativ în valută:
95.43€ • 111.18$ • 83.34£
95.43€ • 111.18$ • 83.34£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792338345
ISBN-10: 0792338340
Pagini: 230
Ilustrații: IX, 230 p.
Dimensiuni: 160 x 240 mm
Greutate: 0.59 kg
Ediția:1996 edition
Editura: Springer
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792338340
Pagini: 230
Ilustrații: IX, 230 p.
Dimensiuni: 160 x 240 mm
Greutate: 0.59 kg
Ediția:1996 edition
Editura: Springer
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I. General remarks.- II. Notations.- III. Lie algebras: some basics.- 1 Operator calculus and Appell systems.- I. Boson calculus.- II. Holomorphic canonical calculus.- III. Canonical Appell systems.- 2 Representations of Lie groups.- I. Coordinates on Lie groups.- II. Dual representations.- III. Matrix elements.- IV. Induced representations and homogeneous spaces.- 3 General Appell systems.- I. Convolution and stochastic processes.- II. Stochastic processes on Lie groups.- III. Appell systems on Lie groups.- 4 Canonical systems in several variables.- I. Homogeneous spaces and Cartan decompositions.- II. Induced representation and coherent states.- III. Orthogonal polynomials in several variables.- 5 Algebras with discrete spectrum.- I. Calculus on groups: review of the theory.- II. Finite-difference algebra.- III. q-HW algebra and basic hypergeometric functions.- IV. su2 and Krawtchouk polynomials.- V. e2 and Lommel polynomials.- 6 Nilpotent and solvable algebras.- I. Heisenberg algebras.- II. Type-H Lie algebras.- III. Upper-triangular matrices.- IV. Affine and Euclidean algebras.- 7 Hermitian symmetric spaces.- I. Basic structures.- II. Space of rectangular matrices.- III. Space of skew-symmetric matrices.- IV. Space of symmetric matrices.- 8 Properties of matrix elements.- I. Addition formulas.- II. Recurrences.- III. Quotient representations and summation formulas.- 9 Symbolic computations.- I. Computing the pi-matrices.- II. Adjoint group.- III. Recursive computation of matrix elements.- IV. Symbolic computation of Appell systems.- MAPLE output and procedures.- References.