Advanced Methods of Physiological System Modeling: Volume 3
Editat de V.Z. Marmarelisen Limba Engleză Hardback – 31 oct 1994
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 359.84 lei 6-8 săpt. | |
| Springer Us – 10 mai 2012 | 359.84 lei 6-8 săpt. | |
| Springer Us – 29 apr 2013 | 691.42 lei 6-8 săpt. | |
| Hardback (1) | 694.44 lei 6-8 săpt. | |
| Springer Us – 31 oct 1994 | 694.44 lei 6-8 săpt. |
Preț: 694.44 lei
Preț vechi: 730.99 lei
-5% Nou
Puncte Express: 1042
Preț estimativ în valută:
122.86€ • 144.45$ • 107.61£
122.86€ • 144.45$ • 107.61£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780306448195
ISBN-10: 030644819X
Pagini: 272
Ilustrații: XII, 272 p.
Dimensiuni: 178 x 254 x 18 mm
Greutate: 0.58 kg
Ediția:1994
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 030644819X
Pagini: 272
Ilustrații: XII, 272 p.
Dimensiuni: 178 x 254 x 18 mm
Greutate: 0.58 kg
Ediția:1994
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Nonlinear Modeling of Physiological Systems Using Principal Dynamic Modes.- Experimental Basis for an Input/Output Model of the Hippocampal Formation.- Computational Methods of Neuronal Network Decomposition.- An Extension of the M-Sequence Technique for the Analysis of Multi-Input Nonlinear Systems.- Examples of the Investigation of Neural Information Processing by Point Process Analysis.- Testing a Nonlinear Model of Sensory Adaptation with a Range of Step Input Functions.- Identification of Nonlinear System with Feedback Structure.- Identification of Multiple-Input Nonlinear Systems Using Non-White Test Signals.- Nonlinear System Identification of Hippocampal Neurons.- Parametric and Nonparametric Nonlinear Modeling of Renal Autoregulation Dynamics.- Identification of Parametric (NARMAX) Models from Estimated Volterra Kernels.- Equivalence between Nonlinear Differential and Difference Equation Models Using Kernel Invariance Methods.- On Kernel Estimation Using Non-Gaussian and/or Non-White Input Data.- On the Relation between Volterra Models and Feedforward Artificial Neural Networks.- Three Conjectures on Neural Network Implementations of Volterra Models (Mappings).- Contributors.