Cantitate/Preț
Produs

A Formal Approach to Hardware Design

Autor Jørgen Staunstrup
en Limba Engleză Hardback – 31 ian 1994
A Formal Approach to Hardware Design discusses designing computations to be realised by application specific hardware. It introduces a formal design approach based on a high-level design language called Synchronized Transitions. The models created using Synchronized Transitions enable the designer to perform different kinds of analysis and verification based on descriptions in a single language. It is, for example, possible to use exactly the same design description both for mechanically supported verification and synthesis.
Synchronized Transitions is supported by a collection of public domain CAD tools. These tools can be used with the book in presenting a course on the subject.
A Formal Approach to Hardware Design illustrates the benefits to be gained from adopting such techniques, but it does so without assuming prior knowledge of formal design methods. The book is thus not only an excellent reference, it is also suitable for use by students and practitioners.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 90587 lei  43-57 zile
  Springer Us – 9 oct 2012 90587 lei  43-57 zile
Hardback (1) 91209 lei  43-57 zile
  Springer – 31 ian 1994 91209 lei  43-57 zile

Preț: 91209 lei

Preț vechi: 111230 lei
-18%

Puncte Express: 1368

Preț estimativ în valută:
16130 19125$ 14044£

Carte tipărită la comandă

Livrare economică 30 martie-13 aprilie


Specificații

ISBN-13: 9780792394273
ISBN-10: 0792394275
Pagini: 250
Ilustrații: XIV, 232 p.
Dimensiuni: 160 x 241 x 19 mm
Greutate: 0.54 kg
Ediția:1994
Editura: Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Formal Design Methods.- 1.1 Why Use Formal Methods?.- 1.2 Models of Integrated Circuits.- 1.3 Synchronized Transitions.- 1.4 Background.- 2 DESIGNING WITH TRANSITIONS.- 2.1 Computational Model.- 2.2 States.- 2.3 Transitions.- 2.4 Arrays and Quantification.- 2.5 Fixed Points.- 2.6 Statics.- 2.7 Named Transitions.- 2.8 Cells.- 2.9 Conditional Instantiation.- 2.10 Restricting State Variables.- 2.11 Other Constructs.- 2.12 Background.- 2.13 Exercises.- 3 Formal Verification.- 3.1 Invariants and Protocols.- 3.2 Verification of Invariants and Protocols.- 3.3 Mechanical Verification.- 3.4 Verification of Modular Designs.- 3.5 Background.- 3.6 Exercises.- 4 Synchronous Designs.- 4.1 The Synchronous Combinator.- 4.2 Verification of Synchronous Designs.- 4.3 A Fast Adder.- 4.4 Background.- 4.5 Exercises.- 5 Synchronous Realizations.- 5.1 Two-phase Realizations.- 5.2 Timing Estimation.- 5.3 Asynchronous Designs.- 5.4 Implementation Conditions.- 5.5 Background.- 5.6 Exercises.- 6 Refinement.- 6.1 Abstraction Functions.- 6.2 The Weak Refinement Condition.- 6.3 Mechanization.- 6.4 Interface Refinement.- 6.5 Background.- 6.6 Exercises.- 7 Self-Timed Circuits.- 7.1 Classification.- 7.2 Models of Self-timed Circuits.- 7.3 Speed-independence.- 7.4 Hierarchical Designs.- 7.5 Delay-insensitivity.- 7.6 Background.- 7.7 Exercises.- 8 Towards Larger Designs.- 8.1 Combining Asynchronous and Synchronous Computations.- 8.2 Codesign.- 8.3 Background.- 9 EPILOG.- A Synchronized Transitions Report.- References.