Topology and Maps: Mathematical Concepts and Methods in Science and Engineering, cartea 5
Editat de T. Husainen Limba Engleză Paperback – 27 dec 2012
Din seria Mathematical Concepts and Methods in Science and Engineering
-
Preț: 387.09 lei -
Preț: 380.46 lei - 18%
Preț: 804.11 lei -
Preț: 371.73 lei -
Preț: 382.49 lei -
Preț: 384.90 lei -
Preț: 369.74 lei -
Preț: 369.90 lei -
Preț: 375.27 lei -
Preț: 368.23 lei -
Preț: 371.73 lei - 20%
Preț: 617.68 lei -
Preț: 383.03 lei -
Preț: 374.14 lei -
Preț: 373.24 lei - 15%
Preț: 621.03 lei - 20%
Preț: 321.03 lei - 15%
Preț: 614.60 lei - 20%
Preț: 324.03 lei -
Preț: 368.23 lei - 15%
Preț: 627.79 lei - 15%
Preț: 466.78 lei -
Preț: 376.17 lei - 18%
Preț: 904.06 lei - 18%
Preț: 919.54 lei -
Preț: 374.14 lei - 18%
Preț: 919.07 lei - 15%
Preț: 619.75 lei - 18%
Preț: 920.13 lei - 18%
Preț: 1185.38 lei - 18%
Preț: 1185.51 lei -
Preț: 377.48 lei - 18%
Preț: 920.75 lei - 15%
Preț: 614.24 lei - 18%
Preț: 913.16 lei - 15%
Preț: 623.70 lei - 15%
Preț: 546.63 lei -
Preț: 366.95 lei
Preț: 376.01 lei
Puncte Express: 564
Preț estimativ în valută:
66.50€ • 78.84$ • 57.89£
66.50€ • 78.84$ • 57.89£
Carte tipărită la comandă
Livrare economică 30 martie-13 aprilie
Specificații
ISBN-13: 9781461588009
ISBN-10: 1461588006
Pagini: 360
Ilustrații: XX, 337 p.
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
ISBN-10: 1461588006
Pagini: 360
Ilustrații: XX, 337 p.
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Preliminaries.- 1. Fundamental Notions of Set Theory.- 2. Relations and Mappings.- 3. Partial and Linear Orderings; Cartesian Products.- 4. Lattices.- 5. Algebraic Structures.- 6. Categories and Functors.- II. Topological Spaces.- 7. Open and Closed Sets.- 8. Topologies and Neighborhoods.- 9. Limit Points.- 10. Bases and Subbases.- 11. First and Second Countable Spaces.- 12. Metric Spaces.- 13. Nets.- 14. Filters.- 15. Topologies Defined by Other Topologies.- Examples and Exercises.- III. Continuity and Separation Axioms.- 16. Continuous and Open Mappings.- 17. Topologies Defined by Mappings.- 18. Separation Axioms.- 19. Continuous Functions on Normal Spaces.- Examples and Exercises.- IV. Methods for Constructing New Topological Spaces from Old.- 20. Subspaces.- 21. Topological Sums.- 22. Topological Products.- 23. Quotient Topology and Quotient Spaces.- 24. Projective and Inductive Limits.- Examples and Exercises.- V. Uniform Spaces.- 25. Uniformities and Topologies.- 26. Uniformity and Separation Axioms.- 27. Uniformizable Spaces.- 28. Uniform Continuity and Uniform Spaces.- 29. Completeness in Uniform Spaces.- 30. Completeness, Compactness, and Completions.- 31. Topological Groups and Topological Vector Spaces.- 32. Metrizability.- 33. Fixed Points.- 34. Proximity Spaces.- Examples and Exercises.- VI. Compact Spaces and Various Other Types of Spaces.- 35. Compact Spaces.- 36. Countable Compactness and Sequential Compactness.- 37. Compactness in Metric Spaces.- 38. Locally Compact Spaces.- 39. MB-Spaces.- 40. k-Spaces and kr-Spaces.- 41. Baire Spaces.- 42. Pseudocompact Spaces.- 43. Paracompact Spaces.- 44. Compactifications.- Examples and Exercises.- VII. Generalizations of Continuous Maps.- 45. Almost Continuous Maps.- 46. Closed Graphs.- 47. Almost Continuity and Closed Graphs.- 48. Graphically Continuous Maps.- 49. Nearly Continuous and w-Continuous Maps.- 50. Semicontinuous Maps.- 51. Approximately Continuous Functions.- 52. Applications of Almost Continuity.- Examples and Exercises.- VIE. Function Spaces.- 53. The Set of All Maps.- 54. Compact-Open Topology and the Topology of Joint Continuity.- 55. Subsets of FE with Induced Topologies.- 56. The Uniformities on FE.- 57. 𝔖-Uniformities and 𝔖-Topologies.- 58. Equicontinuous Maps.- 59. Equicontinuity and Metric Spaces.- 60. Sequential Convergence in Function Spaces.- Examples and Exercises.- IX. Extensions of Mappings.- 61. Extensions of Maps on Completely Regular and Metric Spaces.- 62. The Hahn-Banach Extension Theorem.- 63. A General Extension Theorem.- Examples and Exercises.- X. C(X) Spaces.- 64. Stone-Weierstrass Theorem.- 65. Embeddings of X into C(X).- 66. C(X) Spaces for Compact Spaces X.- 67. Separability in C(X).- 68. C(X) Spaces for Completely Regular Spaces X.- 69. Characterization of Banach and Fréchet Spaces C(X).- 70. Characterization of Locally Convex Spaces C(X).- Epilogue.- Examples and Exercises.