Topological Function Spaces: Mathematics and its Applications, cartea 78
Autor A.V. Arkhangel'skiien Limba Engleză Paperback – 21 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 369.16 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 21 oct 2012 | 369.16 lei 6-8 săpt. | |
| Hardback (1) | 376.90 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 noi 1991 | 376.90 lei 6-8 săpt. |
Din seria Mathematics and its Applications
-
Preț: 398.01 lei - 20%
Preț: 613.70 lei - 15%
Preț: 680.49 lei - 20%
Preț: 373.35 lei -
Preț: 419.52 lei -
Preț: 461.04 lei -
Preț: 438.14 lei - 15%
Preț: 618.78 lei - 18%
Preț: 702.82 lei -
Preț: 471.35 lei - 15%
Preț: 434.03 lei - 15%
Preț: 411.63 lei - 18%
Preț: 705.56 lei -
Preț: 430.56 lei - 20%
Preț: 737.41 lei -
Preț: 435.00 lei - 15%
Preț: 615.63 lei - 18%
Preț: 820.79 lei - 18%
Preț: 1186.02 lei -
Preț: 462.26 lei -
Preț: 437.94 lei - 15%
Preț: 678.08 lei - 18%
Preț: 1014.51 lei - 18%
Preț: 705.75 lei - 20%
Preț: 486.11 lei - 15%
Preț: 420.02 lei - 15%
Preț: 618.03 lei - 15%
Preț: 671.45 lei -
Preț: 378.05 lei - 15%
Preț: 626.52 lei - 15%
Preț: 622.59 lei -
Preț: 374.71 lei -
Preț: 379.15 lei
Preț: 369.16 lei
Nou
Puncte Express: 554
Preț estimativ în valută:
65.31€ • 76.09$ • 57.04£
65.31€ • 76.09$ • 57.04£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401051477
ISBN-10: 940105147X
Pagini: 216
Ilustrații: IX, 205 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 940105147X
Pagini: 216
Ilustrații: IX, 205 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
0. General information on Cp(X) as an object of topological algebra. Introductory material.- 1. General questions about Cp(X).- 2. Certain notions from general topology. Terminology and notation.- 3. Simplest properties of the spaces Cp(X, Y).- 4. Restriction map and duality map.- 5. Canonical evaluation map of a space X in the space CpCp(X).- 6. Nagata’s theorem and Okunev’s theorem.- I. Topological properties of Cp(X) and simplest duality theo-rems.- 1. Elementary duality theorems.- 2. When is the space Cp(X) u-compact?.- 3. “tech completeness and the Baire property in spaces Cp(X).- 4. The Lindelöf number of a space Cp(X),and Asanov’s theorem.- 5. Normality, collectionwise normality, paracompactness, and the extent of Cp(X).- 6. The behavior of normality under the restriction map between function spaces.- II. Duality between invariants of Lindelöf number and tightness type.- 1. Lindelöf number and tightness: the Arkhangel’skii—Pytkeev theorem.- 2. Hurewicz spaces and fan tightness.- 3. Fréchet—Urysohn property, sequentiality, and the k-property of Cp(X).- 4. Hewitt—Nachbin spaces and functional tightness.- 5. Hereditary separability, spread, and hereditary Lindelöf number.- 6. Monolithic and stable spaces in Cp-duality.- 7. Strong monolithicity and simplicity.- 8. Discreteness is a supertopological property.- III. Topological properties of function spaces over arbitrary compacta.- 1. Tightness type properties of spaces Cp(X), where X is a compactum, and embedding in such Cp(X).- 2. Okunev’s theorem on the preservation of Q-compactness under t-equivalence.- 3. Compact sets of functions in Cp(X). Their simplest topological properties.- 4. Grothendieck’s theorem and its generalizations.- 5. Namioka’s theorem, and Pták’s approach.- 6.Baturov’s theorem on the Lindelöf number of function spaces over compacta.- IV. Lindelöf number type properties for function spaces over compacta similar to Eberlein compacta, and properties of such compacta.- 1. Separating families of functions, and functionally perfect spaces.- 2. Separating families of functions on compacta and the Lindelöf number of Cp(X).- 3. Characterization of Corson compacta by properties of the space Cp(X).- 4. Resoluble compacta, and condensations of Cp(X) into a ?*-product of real lines. Two characterizations of Eberlein compacta.- 5. The Preiss—Simon theorem.- 6. Adequate families of sets: a method for constructing Corson compacta.- 7. The Lindelöf number of the space Cp(X),and scattered compacta.- 8. The Lindelöf number of Cp(X) and Martin’s axiom.- 9. Lindelöf ?-spaces, and properties of the spaces Cp,n(X).- 10. The Lindelöf number of a function space over a linearly ordered compactum.- 11. The cardinality of Lindelöf subspaces of function spaces over compacta.