Subsurface Data Assimilation: Theory and Applications
Editat de Xiaodong Luo, Olwijn Leeuwenburgh, Alexandre Anoze Emericken Limba Engleză Paperback – 15 iun 2026
- Bridges the potential gaps between theoretical analysis and practical applicability
- Analysis of state-of-the-art research fronts in subsurface data assimilation problems
- Describes hands-on experience from respective field experts in diverse subsurface data assimilation cases
Preț: 776.97 lei
Preț vechi: 853.81 lei
-9% Precomandă
Puncte Express: 1165
Preț estimativ în valută:
137.36€ • 163.27$ • 119.18£
137.36€ • 163.27$ • 119.18£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Specificații
ISBN-13: 9780443415432
ISBN-10: 0443415439
Pagini: 300
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443415439
Pagini: 300
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Cuprins
Part I: Theoretical Foundations of Data Assimilation Algorithms
1. Recent Progresses of Data Assimilation Methods Applied to Subsurface Characterization and Monitoring Problems
2. Multilevel Data Assimilation
3. Coupled Data Assimilation and Machine Learning
4. Generative Neural Networks for Geological Parameterization
5. Latent-Space Data Assimilation (LSDA): Leveraging Deep Learning for Feature-Based Analysis and Forecasting
6. Geostatistical Seismic Inversion
Part II: Applications to Various Subsurface Problems
7. CO₂ Monitoring
8. Geologic CO2 Sequestration
9. Earthquake or CO2 Storage
10. Hierarchical Data Assimilation Procedures for Carbon Storage with Uncertain Geological Scenario
11. Geothermal Energy
12. Practical Uncertainty Management, Practices, and Challenges in CO2 Storage/Geothermal Energy
1. Recent Progresses of Data Assimilation Methods Applied to Subsurface Characterization and Monitoring Problems
2. Multilevel Data Assimilation
3. Coupled Data Assimilation and Machine Learning
4. Generative Neural Networks for Geological Parameterization
5. Latent-Space Data Assimilation (LSDA): Leveraging Deep Learning for Feature-Based Analysis and Forecasting
6. Geostatistical Seismic Inversion
Part II: Applications to Various Subsurface Problems
7. CO₂ Monitoring
8. Geologic CO2 Sequestration
9. Earthquake or CO2 Storage
10. Hierarchical Data Assimilation Procedures for Carbon Storage with Uncertain Geological Scenario
11. Geothermal Energy
12. Practical Uncertainty Management, Practices, and Challenges in CO2 Storage/Geothermal Energy