Subspace, Latent Structure and Feature Selection
Editat de Craig Saunders, Marko Grobelnik, Steve Gunn, John Shawe-Tayloren Limba Engleză Paperback – 16 mai 2006
Preț: 317.29 lei
Preț vechi: 396.61 lei
-20%
Puncte Express: 476
Preț estimativ în valută:
56.15€ • 65.63$ • 48.75£
56.15€ • 65.63$ • 48.75£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540341376
ISBN-10: 3540341374
Pagini: 224
Ilustrații: X, 209 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540341374
Pagini: 224
Ilustrații: X, 209 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Contributions.- Discrete Component Analysis.- Overview and Recent Advances in Partial Least Squares.- Random Projection, Margins, Kernels, and Feature-Selection.- Some Aspects of Latent Structure Analysis.- Feature Selection for Dimensionality Reduction.- Contributed Papers.- Auxiliary Variational Information Maximization for Dimensionality Reduction.- Constructing Visual Models with a Latent Space Approach.- Is Feature Selection Still Necessary?.- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data.- Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery.- A Simple Feature Extraction for High Dimensional Image Representations.- Identifying Feature Relevance Using a Random Forest.- Generalization Bounds for Subspace Selection and Hyperbolic PCA.- Less Biased Measurement of Feature Selection Benefits.