Structural Complexity I: Texts in Theoretical Computer Science. An EATCS Series
Autor Jose L. Balcazar, Josep Diaz, Joaquim Gabarroen Limba Engleză Paperback – 9 dec 2011
Din seria Texts in Theoretical Computer Science. An EATCS Series
- 20%
Preț: 215.33 lei - 20%
Preț: 328.29 lei - 20%
Preț: 576.62 lei -
Preț: 447.93 lei - 20%
Preț: 699.00 lei - 20%
Preț: 332.10 lei -
Preț: 369.36 lei - 20%
Preț: 319.42 lei - 20%
Preț: 620.02 lei - 20%
Preț: 326.24 lei - 15%
Preț: 568.50 lei -
Preț: 384.33 lei - 20%
Preț: 348.74 lei - 20%
Preț: 319.42 lei - 20%
Preț: 961.00 lei - 20%
Preț: 578.69 lei - 20%
Preț: 328.62 lei - 20%
Preț: 383.84 lei - 20%
Preț: 630.47 lei -
Preț: 379.31 lei - 20%
Preț: 521.31 lei - 20%
Preț: 323.55 lei - 15%
Preț: 685.00 lei - 20%
Preț: 566.13 lei - 20%
Preț: 694.70 lei - 20%
Preț: 587.56 lei - 20%
Preț: 456.10 lei - 20%
Preț: 500.14 lei - 20%
Preț: 483.48 lei -
Preț: 373.24 lei - 20%
Preț: 414.14 lei - 20%
Preț: 329.25 lei - 20%
Preț: 338.61 lei
Preț: 316.59 lei
Preț vechi: 395.75 lei
-20% Nou
Puncte Express: 475
Preț estimativ în valută:
56.02€ • 65.33$ • 49.19£
56.02€ • 65.33$ • 49.19£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642792373
ISBN-10: 3642792375
Pagini: 228
Ilustrații: XIII, 208 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.33 kg
Ediția:2nd ed. 1995. Softcover reprint of the original 2nd ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Texts in Theoretical Computer Science. An EATCS Series
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642792375
Pagini: 228
Ilustrații: XIII, 208 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.33 kg
Ediția:2nd ed. 1995. Softcover reprint of the original 2nd ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Texts in Theoretical Computer Science. An EATCS Series
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Introduction.- 2 Basic Notions About Models of Computation.- 1.1 Introduction.- 1.2 Alphabets, Words, Sets, and Classes.- 1.3 Inclusion Modulo Finite Variants.- 1.4 Boolean Formulas.- 1.5 Models of Computation: Finite Automata.- 1.6 Models of Computation: Taring Machines.- 1.7 Models of Computation: Nondeterministic Turing Machines.- 1.8 Models of Computation: Oracle Turing Machines.- 1.9 Bibliographical Remarks.- 3 Time and Space Bounded Computations.- 2.1 Introduction.- 2.2 Orders of Magnitude.- 2.3 Running Time and Work Space of Turing Machines.- 2.4 Time and Space Constructibility.- 2.5 Bounding Resources: Basic Definitions and Relationships.- 2.6 Bibliographical Remarks.- 4 Central Complexity Classes.- 3.1 Introduction.- 3.2 Definitions, Properties, and Examples.- 3.3 Computing Functions: Invertibility and Honesty.- 3.4 Polynomial Time Many-one Reducibility.- 3.5 “Natural” NP-complete Sets.- 3.6 “Natural” PSPACE-complete Sets.- 3.7 Padding Arguments.- 3.8 Space Bounded Reducibility.- 3.9 Exercises.- 3.10 Bibliographical Remarks.- 5 Time Bounded Turing Reducibilities.- 4.1 Introduction.- 4.2 Polynomial Time Turing Reducibility: Relativized Classes.- 4.3 Tally and Sparse Sets in NP.- 4.4 Strong Nondeterministic Polynomial Time Reducibility.- 4.5 Self-Reducibility.- 4.6 Exercises.- 4.7 Bibliographical Remarks.- 6 Nonuniform Complexity.- 5.1 Introduction.- 5.2 Classes Defined by Advice Functions.- 5.3 Boolean Circuit Complexity.- 5.4 Turing Machines and Boolean Circuits.- 5.5 Polynomial Advice.- 5.6 Logarithmic Advice.- 5.7 Self-Producible Circuits.- 5.8 A Lower Bound to the Circuit Size of Boolean Functions.- 5.9 Other Nonuniform Complexity Measures.- 5.10 Exercises.- 5.11 Bibliographical Remarks.- 7 Probabilistic Algorithms.- 6.1 Introduction.- 6.2 TheProbabilistic Computational Model.- 6.3 Polynomial Time Probabilistic Classes.- 6.4 Bounded Error Probability.- 6.5 Nonuniform Properties of BPP.- 6.6 Zero Error Probability.- 6.7 Exercises.- 6.8 Bibliographical Remarks.- 8 Uniform Diagonalization.- 7.1 Introduction.- 7.2 Presentability and Other Properties.- 7.3 The Main Theorem.- 7.4 Applications.- 7.5 Exercises.- 7.6 Bibliographical Remarks.- 9 The Polynomial Time Hierarchy.- 8.1 Introduction.- 8.2 Definition and Properties.- 8.3 Characterization and Consequences.- 8.4 Complete Sets and Presentability.- 8.5 BPP and the Polynomial Time Hierarchy.- 8.6 Exercises.- 8.7 Bibliographical Remarks.- References.- Appendix Complementation via Inductive Counting.- Author Index.- Symbol Index.