Solution Sets for Differential Equations and Inclusions: de Gruyter Series in Nonlinear Analysis and Applications, cartea 18
Autor Smaïl Djebali, Lech Górniewicz, Abdelghani Ouahaben Mixed media product – 31 dec 2011
Din seria de Gruyter Series in Nonlinear Analysis and Applications
- 23%
Preț: 1256.00 lei - 23%
Preț: 2261.31 lei - 23%
Preț: 1330.27 lei - 23%
Preț: 1690.04 lei - 9%
Preț: 1150.70 lei - 23%
Preț: 1806.43 lei - 9%
Preț: 1067.45 lei - 23%
Preț: 1485.30 lei - 23%
Preț: 1474.06 lei - 23%
Preț: 1113.76 lei - 9%
Preț: 1053.76 lei - 9%
Preț: 986.14 lei - 23%
Preț: 1109.38 lei - 23%
Preț: 987.06 lei - 23%
Preț: 1847.73 lei - 23%
Preț: 817.40 lei - 23%
Preț: 1111.91 lei - 23%
Preț: 1116.90 lei - 23%
Preț: 1575.49 lei - 27%
Preț: 1094.35 lei - 27%
Preț: 635.86 lei - nou
Preț: 1245.62 lei - nou
Preț: 632.58 lei - 27%
Preț: 1669.38 lei - 27%
Preț: 1457.20 lei - 27%
Preț: 1094.35 lei
Preț: 943.10 lei
Preț vechi: 1291.92 lei
-27% Nou
166.86€ • 194.39$ • 145.71£
Carte indisponibilă temporar
Specificații
ISBN-10: 3110293579
Ilustrații: Includes a print version and an ebook
Dimensiuni: 170 x 240 mm
Ediția:
Editura: De Gruyter
Seria de Gruyter Series in Nonlinear Analysis and Applications
Locul publicării:Berlin/Boston
Notă biografică
Cuprins
1 TOPOLOGICAL STRUCTURE OF FIXED POINT SETS 11
1.1 Case of single-valued mappings . . . . . . . . . . . . . . . . . . . . . . 11
1.1.1 Fundamental ¯xed point theorems . . . . . . . . . . . . . . . . . 11
1.1.2 Approximation theorems . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Browder{Gupta Theorems . . . . . . . . . . . . . . . . . . . . . 16
1.1.4 Acyclicity of the solution sets of operator equation . . . . . . . 21
1.1.5 Solution sets for nonexpansive maps . . . . . . . . . . . . . . . . 24
1.2 Case of multi-valued mappings . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.1 Fixed point theorems . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.2 Multivalued contractions . . . . . . . . . . . . . . . . . . . . . . 27
1.2.3 Fixed point sets of multi-valued contractions . . . . . . . . . . . 29
1.2.4 Fixed point sets of multivalued condensing maps . . . . . . . . . 32
1.2.5 Approximation of multi-valued maps . . . . . . . . . . . . . . . 37
1.3 Admissible maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3.2 Fixed point theorems for admissible multivalued maps . . . . . 48
1.3.3 Browder{Gupta type results for admissible mappings . . . . . . 54
1.4 Topological structure of ¯xed point sets of inverse limit maps . . . . . . 58
1.4.1 De¯nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.4.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.4.3 Multi-maps of inverse systems . . . . . . . . . . . . . . . . . . . 60
1.5 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.5.1 Semi-compactness in L1 . . . . . . . . . . . . . . . . . . . . . . 63
1.5.2 Decomposability in L1(T;E) . . . . . . . . . . . . . . . . . . . . 64
1.5.3 Michael family of subsets . . . . . . . . . . . . . . . . . . . . . . 66
2 EXISTENCE THEORY FOR DIFFERENTIAL EQUATIONS AND
INCLUSIONS 71
2.1 Case of di®erential equations . . . . . . . . . . . . . . . . . . . . . . . . 71
2.1.1 Existence and uniqueness results . . . . . . . . . . . . . . . . . 71
2.1.2 Picard-LindelÄof Theorem . . . . . . . . . . . . . . . . . . . . . . 72
2.1.3 Peano and Carath¶eodory theorems . . . . . . . . . . . . . . . . 77
2.1.4 Global existence theorems . . . . . . . . . . . . . . . . . . . . . 79
2.1.5 Existence results on non-compact intervals . . . . . . . . . . . . 82
2.1.6 A boundary value problem on the half-line . . . . . . . . . . . . 89
2.2 Case of di®erential inclusions . . . . . . . . . . . . . . . . . . . . . . . 94
2.2.1 Initial value problem . . . . . . . . . . . . . . . . . . . . . . . . 94
2.2.2 A boundary value problem . . . . . . . . . . . . . . . . . . . . . 99
3 SOLUTIONS SETS FOR DIFFERENTIAL EQUATIONS AND IN-
CLUSIONS 105
3.1 Solutions sets for di®erential equations . . . . . . . . . . . . . . . . . . 105
3.1.1 Problems on bounded intervals . . . . . . . . . . . . . . . . . . 105
3.1.2 Problems on unbounded intervals . . . . . . . . . . . . . . . . . 107
3.1.3 Kneser-Hukuhara Theorem . . . . . . . . . . . . . . . . . . . . . 109
3.2 Aronszajn-type results for di®erential inclusions . . . . . . . . . . . . . 111
3.3 Application to neutral di®erential inclusions . . . . . . . . . . . . . . . 118
3.3.1 The convex case . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.2 The nonconvex case . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.3.3 Solutions sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.4 Application to second order di®erential inclusions . . . . . . . . . . . . 136
3.4.1 The convex case . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.4.2 The nonconvex case . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.4.3 Solution sets to second-order di®erential equations . . . . . . . . 144
3.4.4 Solution sets to second-order di®erential inclusions . . . . . . . 146
3.5 Application to a nonlocal problem . . . . . . . . . . . . . . . . . . . . . 150
3.5.1 Existence results . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.5.2 Solutions set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.6 Application to a nonlocal viability problem . . . . . . . . . . . . . . . . 152
3.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.6.2 Viable solutions on proximate retracts . . . . . . . . . . . . . . 154
3.7 Application to hyperbolic di®erential inclusions . . . . . . . . . . . . . 158
3.7.1 Existence results . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.7.2 Solution sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.8 Application to abstract Volterra operators . . . . . . . . . . . . . . . . 166
4 IMPULSIVE DIFFERENTIAL INCLUSIONS: EXISTENCE AND
SOLUTION SETS 169
4.1 Impulsive di®erential inclusions . . . . . . . . . . . . . . . . . . . . . . 169
4.1.1 C0¡Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.1.3 Existence results . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.1.4 Structure of solution sets . . . . . . . . . . . . . . . . . . . . . . 190
4.2 A periodic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.2.1 Existence results: 1 2 ¿(T(b)) . . . . . . . . . . . . . . . . . . . 203
4.2.2 The convex case: direct approach . . . . . . . . . . . . . . . . . 204
4.2.3 The convex case: MNC approach . . . . . . . . . . . . . . . . . 211
4.2.4 The nonconvex case . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.5 The parameter-dependant case . . . . . . . . . . . . . . . . . . 219
4.2.6 Filippov's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.2.7 Existence of solutions: 1 62 ¿(T(b)) . . . . . . . . . . . . . . . . 232
4.3 Impulsive Functional Di®erential Inclusions . . . . . . . . . . . . . . . . 238
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4.3.2 Existence results . . . . . . . . . . . . . . . . . . . . . . . . . . 239
4.3.3 Structure of the solution set . . . . . . . . . . . . . . . . . . . . 247
4.4 Impulsive di®erential inclusions on the half-line . . . . . . . . . . . . . 251
4.4.1 Existence results and compactness of solution sets . . . . . . . . 252
4.4.2 Topological structure via the projective limit . . . . . . . . . . . 266
4.4.3 Using solution sets to prove existence results . . . . . . . . . . . 282
I SUPPLEMENTS 287
5 PRELIMINARY NOTIONS OF TOPOLOGY 289
5.1 Extension and embedding properties . . . . . . . . . . . . . . . . . . . 289
5.2 Homotopical properties of spaces . . . . . . . . . . . . . . . . . . . . . 296
5.3 ·Cech homology (cohomology) functor . . . . . . . . . . . . . . . . . . . 303
5.4 Maps of spaces of ¯nite type . . . . . . . . . . . . . . . . . . . . . . . . 304
5.5 ·Cech homology functor with compact carriers . . . . . . . . . . . . . . 311
5.6 Acyclic sets and Vietoris maps . . . . . . . . . . . . . . . . . . . . . . . 313
5.7 Homology of open subsets of Euclidean spaces . . . . . . . . . . . . . . 317
5.8 Lefschetz number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
5.9 Coincidence problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
6 BACKGROUND IN MULTI-VALUED ANALYSIS 335
6.1 Continuity of multivalued mappings . . . . . . . . . . . . . . . . . . . . 337
6.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6.1.2 Upper semi-continuity . . . . . . . . . . . . . . . . . . . . . . . 339
6.1.3 Lower semi-continuity . . . . . . . . . . . . . . . . . . . . . . . 344
6.1.4 Hausdor® continuity . . . . . . . . . . . . . . . . . . . . . . . . 347
6.2 Selection theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.2.1 Partitions of unity . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.2.2 Michael's selection theorem . . . . . . . . . . . . . . . . . . . . 350
6.2.3 ¿¡selectionable mappings . . . . . . . . . . . . . . . . . . . . . 353
6.2.4 The Kuratowski-Ryll-Nardzewski selection theorem . . . . . . . 356
6.2.5 Hausdor®-measurable multivalued maps . . . . . . . . . . . . . 371
6.2.6 The Scorza-Dragoni property . . . . . . . . . . . . . . . . . . . 373
6.2.7 The Bressan-Colombo-Fryszkowski selection theorem . . . . . . 379
6.3 The Bochner integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
6.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
6.3.2 Nemytski·i operators . . . . . . . . . . . . . . . . . . . . . . . . 383
6.3.3 Integration of multivalued maps . . . . . . . . . . . . . . . . . . 386
6.4 Compactness in C([a; b];E) and PC([a; b];E) . . . . . . . . . . . . . . . 388
6.5 Further auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . 391