Sharing Data and Models in Software Engineering
Autor Tim Menzies, Ekrem Kocaguneli, Burak Turhan, Leandro Minku, Fayola Petersen Limba Engleză Paperback – 16 dec 2014
- Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering
- Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls
- Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research
- Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data
Preț: 360.08 lei
Preț vechi: 554.48 lei
-35% Nou
Puncte Express: 540
Preț estimativ în valută:
63.71€ • 74.90$ • 55.80£
63.71€ • 74.90$ • 55.80£
Carte tipărită la comandă
Livrare economică 21 ianuarie-04 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780124172951
ISBN-10: 0124172954
Pagini: 406
Dimensiuni: 191 x 235 x 20 mm
Greutate: 0.84 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0124172954
Pagini: 406
Dimensiuni: 191 x 235 x 20 mm
Greutate: 0.84 kg
Editura: ELSEVIER SCIENCE
Cuprins
- Introduction
- Data Science 101
- Cross company data: Friend or Foe?
- Pruning: Relevancy is the Removal of Irrelevancy
- Easy Path: Smarter Design
- Instance Weighting: How not to elaborate on analogies
- Privacy: Data in Disguise
- Stability: How to find a silver-bullet model?
- Complexity: How to ensemble multiple models?