Scale Space and PDE Methods in Computer Vision
Editat de Ron Kimmel, Nir Sochen, Joachim Weickerten Limba Engleză Paperback – 7 apr 2005
Preț: 683.87 lei
Preț vechi: 854.83 lei
-20% Nou
Puncte Express: 1026
Preț estimativ în valută:
120.99€ • 142.25$ • 105.97£
120.99€ • 142.25$ • 105.97£
Carte tipărită la comandă
Livrare economică 24-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540255475
ISBN-10: 3540255478
Pagini: 652
Ilustrații: XI, 634 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.97 kg
Ediția:2005
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540255478
Pagini: 652
Ilustrații: XI, 634 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.97 kg
Ediția:2005
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Oral Presentations.- Relativistic Scale-Spaces.- Regularity and Scale-Space Properties of Fractional High Order Linear Filtering.- Image Features and the 1-D, 2 nd Order Gaussian Derivative Jet.- A New Technique for Local Symmetry Estimation.- Geometry of Isophote Curves.- Stability of Top-Points in Scale Space.- Discrete Representation of Top Points via Scale Space Tessellation.- A Linear Image Reconstruction Framework Based on Sobolev Type Inner Products.- Multi-scale Singularity Trees: Soft-Linked Scale-Space Hierarchies.- Image Deblurring in the Presence of Salt-and-Pepper Noise.- Phase Contrast MRI Segmentation Using Velocity and Intensity.- Active Shape Models and Segmentation of the Left Ventricle in Echocardiography.- A Variational Image Registration Approach Based on Curvature Scale Space.- A Scale-Space Analysis of a Contour Figure Using a Crystalline Flow.- Multiscale Active Contours.- Riesz-Transforms Versus Derivatives: On the Relationship Between the Boundary Tensor and the Energy Tensor.- GET: The Connection Between Monogenic Scale-Space and Gaussian Derivatives.- Matrix-Valued Filters as Convex Programs.- Retinex by Two Bilateral Filters.- Estimation of the Optimal Variational Parameter via SNR Analysis.- A Contrast Invariant Approach to Motion Estimation.- Vortex and Source Particles for Fluid Motion Estimation.- Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation.- Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time.- Poster Presentations.- The Structure of Shapes Scale Space Aspects of the (pre-) Symmetry Set.- A Non-convex PDE Scale Space.- Tree Edit Distances from Singularity Theory.- The Stochastic Structure of Images.- Skeletons of 3D Shapes.- Scale-Space Generation via Uncertainty Principles.- ScaleInvariant Texture Analysis Using Multi-scale Local Autocorrelation Features.- Figure Field Analysis of Linear Scale-Space Image.- Mumford-Shah Model Based Man-Made Objects Detection from Aerial Images.- A Multigrid Approach to Image Processing.- A Total Variation Motion Adaptive Deinterlacing Scheme.- A Geometric Formulation of Gradient Descent for Variational Problems with Moving Surfaces.- On Image Reconstruction from Multiscale Top Points.- Texture Mapping via Spherical Multi-dimensional Scaling.- On Similarity-Invariant Fairness Measures.- On ? Kernels, Lévy Processes, and Natural Image Statistics.- An Analysis of Variational Alignment of Curves in Images.- Enhancing Images Painted on Manifolds.- A Two-Step Area Based Method for Automatic Tight Segmentation of Zona Pellucida in HMC Images of Human Embryos.- Relations Between Higher Order TV Regularization and Support Vector Regression.- Perfusion Analysis of Nonlinear Liver Ultrasound Images Based on Nonlinear Matrix Diffusion.- Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs.- Sparse Finite Element Level-Sets for Anisotropic Boundary Detection in 3D Images.- A Scale Space Method for Volume Preserving Image Registration.- Piecewise Constant Level Set Methods and Image Segmentation.- PDE-Based Deconvolution with Forward-Backward Diffusivities and Diffusion Tensors.- Denoising of Audio Data by Nonlinear Diffusion.- A Four-Pixel Scheme for Singular Differential Equations.- Isometric Embedding of Facial Surfaces into .