Risk Theory: The Stochastic Basis of Insurance: Ettore Majorana International Science Series, cartea 1
Autor E. Bearden Limba Engleză Paperback – 13 noi 2013
Din seria Ettore Majorana International Science Series
-
Preț: 388.04 lei -
Preț: 376.01 lei -
Preț: 383.96 lei -
Preț: 392.47 lei - 18%
Preț: 763.62 lei -
Preț: 412.99 lei -
Preț: 387.09 lei - 5%
Preț: 356.67 lei - 5%
Preț: 1056.32 lei - 15%
Preț: 612.38 lei -
Preț: 380.99 lei -
Preț: 382.65 lei -
Preț: 395.25 lei - 15%
Preț: 630.46 lei -
Preț: 371.37 lei -
Preț: 390.81 lei -
Preț: 400.95 lei -
Preț: 385.79 lei -
Preț: 383.23 lei -
Preț: 361.37 lei - 5%
Preț: 371.96 lei -
Preț: 367.85 lei -
Preț: 379.15 lei - 15%
Preț: 624.95 lei -
Preț: 385.64 lei -
Preț: 387.09 lei - 15%
Preț: 631.08 lei - 18%
Preț: 1172.48 lei -
Preț: 376.01 lei -
Preț: 377.48 lei -
Preț: 390.96 lei -
Preț: 361.78 lei - 18%
Preț: 895.41 lei -
Preț: 419.26 lei - 5%
Preț: 374.06 lei - 18%
Preț: 1178.53 lei - 5%
Preț: 1366.95 lei -
Preț: 403.20 lei -
Preț: 395.25 lei -
Preț: 377.48 lei - 5%
Preț: 368.98 lei - 15%
Preț: 635.18 lei -
Preț: 382.85 lei -
Preț: 392.27 lei -
Preț: 386.16 lei - 18%
Preț: 911.49 lei -
Preț: 389.13 lei
Preț: 366.76 lei
Puncte Express: 550
Preț estimativ în valută:
64.86€ • 76.11$ • 56.26£
64.86€ • 76.11$ • 56.26£
Carte tipărită la comandă
Livrare economică 09-23 martie
Specificații
ISBN-13: 9789400957831
ISBN-10: 9400957831
Pagini: 216
Ilustrații: XVI, 195 p. 19 illus.
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Ettore Majorana International Science Series
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9400957831
Pagini: 216
Ilustrații: XVI, 195 p. 19 illus.
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Ettore Majorana International Science Series
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Definitions and Notations.- 1.1 The Purpose of the Theory of Risk.- 1.2 Random Processes in General.- 1.3. Positive and Negative Risk Sums.- 1.4. Main Problems.- 2. Process with Constant Size of One Claim.- 2.1. Introduction.- 2.2. The Poisson Process.- 2.3. Discussion of Assumptions.- 2.4. Numerical Calculations.- 2.5. Application 1.- 2.6. Application 2.- 3. Generalized Poisson Distribution.- 3.1. The Distribution Function of the Size of a Claim.- 3.2. Generalized Poisson Function.- 3.3. The Mean and Standard Deviation of F(x).- 3.4. Characteristic Function.- 3.5. Estimation of S(z).- 3.6. Decomposition of S(z).- 4. Normal Approximation and Edgeworth Series for F(x).- 4.1. The Normal Approximation.- 4.2. Edgeworth Series.- 4.3. Normal Power Expansion.- 4.4. The Accuracy of the Normal Approximation.- 5. Applications of the Normal Approximation.- 5.1. The Basic Equation.- 5.2. Net Retention.- 5.3. Reserve Funds.- 5.4. Statutory Basis of Reserve Funds.- 5.5. The Rule of Greatest Retention.- 5.6. The Case of Several M’s.- 5.7. An Application to Insurance Statistics.- 5.8. Experience Rating, Credibility Theory.- 6. The Esscher Approximation.- 6.1. Introduction.- 6.2. The Accuracy of the Esscher Formula.- 6.3. Some Hints for Numerical Computations.- 6.4. Examples of Numerical Applications.- 7. Monte Carlo Method.- 7.1. Random Numbers.- 7.2. Simulation of Generalized Poisson Function.- 7.3. Discussion on the Accuracy and a Modification.- 8. Other Methods of Calculating the Generalized Poisson Function.- 8.1. Inversion of the Characteristic Function.- 8.2. A Modification of the Esscher Method.- 8.3. Step Function Approximation of S(z).- 8.4. Exponent Polynomials.- 8.5. Mixed Methods.- 8.6. Statistical Method.- 9. Variance as a Measure of Stability.- 9.1. Optimum Form ofReinsurance.- 9.2. Reciprocity of Two Companies.- 10. Varying Basic Probabilities.- 10.1. Introduction.- 10.2. Compound Poisson Process.- 10.3. Direct Numerical Computation of the Compound Poisson Function.- 10.4. The Polya Process.- 10.5. Application to Stop Loss Reinsurance.- 11. The Ruin Probability During a Finite Time Period.- 11.1. The Ruin Function in Finite Time Periods.- 11.2. Calculation of ?N(U) by a Monte Carlo Method.- 12. The Ruin Probability During an Infinite Time Period.- 12.1. Introduction.- 12.2. Ruin Probability.- 12.3. Applications.- 12.4. Some Approximation Formulae.- 12.5. Discussion on the Different Methods.- 13. Application of Risk Theory to Business Planning.- Appendix A. Derivation of the Poisson Process and Compound Poisson Processes.- Appendix B. The Edgeworth Expansion.- Solutions to the Exercises.- Author Index.