Riemannian Foliations: Progress in Mathematics, cartea 73
Autor Molinoen Limba Engleză Paperback – 27 iul 2012
Din seria Progress in Mathematics
- 18%
Preț: 720.26 lei - 18%
Preț: 700.55 lei - 15%
Preț: 577.71 lei - 15%
Preț: 558.45 lei -
Preț: 380.09 lei -
Preț: 377.48 lei -
Preț: 362.51 lei -
Preț: 375.44 lei - 18%
Preț: 701.32 lei - 15%
Preț: 627.31 lei - 15%
Preț: 624.14 lei - 18%
Preț: 863.10 lei -
Preț: 370.46 lei -
Preț: 376.17 lei -
Preț: 364.19 lei - 15%
Preț: 511.16 lei - 15%
Preț: 618.03 lei - 15%
Preț: 625.57 lei -
Preț: 366.76 lei -
Preț: 377.48 lei -
Preț: 383.38 lei - 15%
Preț: 672.25 lei -
Preț: 450.80 lei -
Preț: 371.20 lei - 18%
Preț: 867.63 lei - 18%
Preț: 771.22 lei - 15%
Preț: 615.35 lei - 18%
Preț: 1085.89 lei - 15%
Preț: 475.06 lei - 15%
Preț: 563.17 lei - 18%
Preț: 1287.84 lei -
Preț: 363.41 lei -
Preț: 365.82 lei - 24%
Preț: 1134.55 lei
Preț: 701.44 lei
Preț vechi: 855.42 lei
-18%
Puncte Express: 1052
Preț estimativ în valută:
124.05€ • 145.57$ • 107.59£
124.05€ • 145.57$ • 107.59£
Carte tipărită la comandă
Livrare economică 09-23 martie
Specificații
ISBN-13: 9781468486728
ISBN-10: 1468486721
Pagini: 360
Ilustrații: XII, 344 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 1468486721
Pagini: 360
Ilustrații: XII, 344 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
1 Elements of Foliation theory.- 1.1. Foliated atlases ; foliations.- 1.2. Distributions and foliations.- 1.3. The leaves of a foliation.- 1.4. Particular cases and elementary examples.- 1.5. The space of leaves and the saturated topology.- 1.6. Transverse submanifolds ; proper leaves and closed leaves.- 1.7. Leaf holonomy.- 1.8. Exercises.- 2 Transverse Geometry.- 2.1. Basic functions.- 2.2. Foliate vector fields and transverse fields.- 2.3. Basic forms.- 2.4. The transverse frame bundle.- 2.5. Transverse connections and G-structures.- 2.6. Foliated bundles and projectable connections.- 2.7. Transverse equivalence of foliations.- 2.8. Exercises.- 3 Basic Properties of Riemannian Foliations.- 3.1. Elements of Riemannian geometry.- 3.2. Riemannian foliations: bundle-like metrics.- 3.3. The Transverse Levi-Civita connection and the associated transverse parallelism.- 3.4. Properties of geodesics for bundle-like metrics.- 3.5. The case of compact manifolds : the universal covering of the leaves.- 3.6. Riemannian foliations with compact leaves and Satake manifolds.- 3.7. Riemannian foliations defined by suspension.- 3.8. Exercises.- 4 Transversally Parallelizable Foliations.- 4.1. The basic fibration.- 4.2. CompIete Lie foliations.- 4.3. The structure of transversally parallelizable foliations.- 4.4. The commuting sheaf C(M, F).- 4.5. Transversally complete foliations.- 4.6. The Atiyah sequence and developability.- 4.7. Exercises.- 5 The Structure of Riemannian Foliations.- 5.1. The lifted foliation.- 5.2. The structure of the leaf closures.- 5.3. The commuting sheaf and the second structure theorem.- 5.4. The orbits of the global transverse fields.- 5.5. Killing foliations.- 5.6. Riemannian foliations of codimension 1, 2 or 3.- 5.7. Exercises.- 6 Singular Riemannian Foliations.- 6.1. The notion of a singular Riemannian foliation.- 6.2. Stratification by the dimension of the leaves.- 6.3. The local decomposition theorem.- 6.4. The linearized foliation.- 6.5. The global geometry of SRFs.- 6.6. Exercises.- Appendix A Variations on Riemannian Flows.- Appendix B Basic Cohomology and Tautness of Riemannian Foliations.- Appendix C The Duality between Riemannian Foliations and Geodesible Foliations.- Appendix D Riemannian Foliations and Pseudogroups of Isometries.- Appendix E Riemannian Foliations: Examples and Problems.- References.