Representation Theory and Complex Analysis
Autor Michael Cowling, Edward Frenkel, Masaki Kashiwara, Alain Valette, David A. Vogan, Nolan R. Wallach Editat de Enrico Casadio Tarabusi, Andrea D'Agnolo, Massimo A. Picardelloen Limba Engleză Paperback – 27 feb 2008
Preț: 413.16 lei
Nou
Puncte Express: 620
Preț estimativ în valută:
73.10€ • 85.16$ • 63.83£
73.10€ • 85.16$ • 63.83£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540768913
ISBN-10: 3540768912
Pagini: 404
Ilustrații: XII, 389 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.61 kg
Ediția:2008
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540768912
Pagini: 404
Ilustrații: XII, 389 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.61 kg
Ediția:2008
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Applications of Representation Theory to Harmonic Analysis of Lie Groups (and Vice Versa).- Ramifications of the Geometric Langlands Program.- Equivariant Derived Category and Representation of Real Semisimple Lie Groups.- Amenability and Margulis Super-Rigidity.- Unitary Representations and Complex Analysis.- Quantum Computing and Entanglement for Mathematicians.
Textul de pe ultima copertă
Six leading experts lecture on a wide spectrum of recent results on the subject of the title, providing both a solid reference and deep insights on current research activity. Michael Cowling presents a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces. Alain Valette recalls the concept of amenability and shows how it is used in the proof of rigidity results for lattices of semisimple Lie groups. Edward Frenkel describes the geometric Langlands correspondence for complex algebraic curves, concentrating on the ramified case where a finite number of regular singular points is allowed. Masaki Kashiwara studies the relationship between the representation theory of real semisimple Lie groups and the geometry of the flag manifolds associated with the corresponding complex algebraic groups. David Vogan deals with the problem of getting unitary representations out of those arising from complex analysis, such as minimal globalizations realized on Dolbeault cohomology with compact support. Nolan Wallach illustrates how representation theory is related to quantum computing, focusing on the study of qubit entanglement.
Caracteristici
Includes supplementary material: sn.pub/extras