Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups
Autor Friedrich Wehrungen Limba Engleză Paperback – 10 sep 2017
Preț: 372.23 lei
Nou
Puncte Express: 558
Preț estimativ în valută:
65.87€ • 77.24$ • 57.85£
65.87€ • 77.24$ • 57.85£
Carte tipărită la comandă
Livrare economică 07-21 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319615981
ISBN-10: 331961598X
Pagini: 252
Ilustrații: VII, 242 p. 5 illus.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:1st edition 2017
Editura: Springer
Locul publicării:Cham, Switzerland
ISBN-10: 331961598X
Pagini: 252
Ilustrații: VII, 242 p. 5 illus.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:1st edition 2017
Editura: Springer
Locul publicării:Cham, Switzerland
Cuprins
Chapter 1. Background.- Chapter 2. Partial commutative monoids. - Chapter 3. Boolean inverse semigroups and additive semigroup homorphisms.- Chapter 4. Type monoids and V-measures. - Chapter 5. Type theory of special classes of Boolean inverse semigroups. - Chapter 6. Constructions involving involutary semirings and rings. - Chapter 7. discussion. - Bibliography.- Author Index. - Glossary.- Index.
Textul de pe ultima copertă
Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.
Caracteristici
Offers a new, universal algebraic and lattice-theoretical approach Provides tools for further work, for example on varieties of algebras, but also on operator theory Includes many examples and counterexamples Includes supplementary material: sn.pub/extras