Quantum Potential Theory
Autor Philippe Biane, Luc Bouten, Fabio Cipriani, Norio Konno, Quanhua Xu Editat de Uwe Franz, Michael Schuermannen Limba Engleză Paperback – 23 sep 2008
Preț: 385.79 lei
Nou
Puncte Express: 579
Preț estimativ în valută:
68.28€ • 79.60$ • 59.72£
68.28€ • 79.60$ • 59.72£
Carte tipărită la comandă
Livrare economică 20 ianuarie-03 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540693642
ISBN-10: 3540693645
Pagini: 480
Ilustrații: XII, 464 p. 18 illus.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.72 kg
Ediția:2008
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540693645
Pagini: 480
Ilustrații: XII, 464 p. 18 illus.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.72 kg
Ediția:2008
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Potential Theory in Classical Probability.- to Random Walks on Noncommutative Spaces.- Interactions between Quantum Probability and Operator Space Theory.- Dirichlet Forms on Noncommutative Spaces.- Applications of Quantum Stochastic Processes in Quantum Optics.- Quantum Walks.
Textul de pe ultima copertă
This volume contains the revised and completed notes of lectures given at the school "Quantum Potential Theory: Structure and Applications to Physics," held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald from February 26 to March 10, 2007.
Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.
Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.
Caracteristici
Includes supplementary material: sn.pub/extras