Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents: Lecture Notes in Mathematics, cartea 2329
Autor Alex Kaltenbachen Limba Engleză Paperback – 12 aug 2023
Din seria Lecture Notes in Mathematics
- 15%
Preț: 390.10 lei -
Preț: 335.91 lei - 15%
Preț: 424.95 lei - 15%
Preț: 429.29 lei -
Preț: 343.86 lei - 17%
Preț: 389.75 lei -
Preț: 336.34 lei - 15%
Preț: 390.30 lei - 15%
Preț: 425.52 lei - 15%
Preț: 458.65 lei - 15%
Preț: 496.17 lei - 15%
Preț: 460.27 lei -
Preț: 125.75 lei - 15%
Preț: 390.24 lei - 15%
Preț: 426.00 lei -
Preț: 344.37 lei -
Preț: 232.11 lei -
Preț: 345.00 lei -
Preț: 213.10 lei -
Preț: 358.83 lei -
Preț: 372.50 lei - 15%
Preț: 389.87 lei -
Preț: 356.32 lei -
Preț: 340.60 lei -
Preț: 150.24 lei - 15%
Preț: 393.18 lei - 15%
Preț: 391.08 lei - 15%
Preț: 389.37 lei -
Preț: 425.01 lei - 15%
Preț: 425.26 lei - 15%
Preț: 390.35 lei -
Preț: 430.03 lei - 15%
Preț: 389.37 lei - 15%
Preț: 391.26 lei -
Preț: 429.73 lei - 20%
Preț: 432.91 lei -
Preț: 441.48 lei -
Preț: 331.57 lei -
Preț: 270.64 lei -
Preț: 180.85 lei -
Preț: 146.01 lei -
Preț: 323.47 lei -
Preț: 428.75 lei -
Preț: 324.93 lei -
Preț: 318.85 lei -
Preț: 252.01 lei -
Preț: 403.63 lei -
Preț: 413.66 lei - 15%
Preț: 479.88 lei -
Preț: 335.80 lei
Preț: 441.48 lei
Puncte Express: 662
Preț estimativ în valută:
78.18€ • 91.31$ • 67.92£
78.18€ • 91.31$ • 67.92£
Carte tipărită la comandă
Livrare economică 21 februarie-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031296697
ISBN-10: 3031296699
Ilustrații: XIII, 358 p. 11 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.52 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3031296699
Ilustrații: XIII, 358 p. 11 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.52 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
- 1. Introduction. - 2. Preliminaries. - Part I Main Part. - 3. Variable Bochner–Lebesgue Spaces. - 4. Solenoidal Variable Bochner–Lebesgue Spaces. - 5. Existence Theory for Lipschitz Domains. - Part II Extensions. - 6. Pressure Reconstruction. - 7. Existence Theory for Irregular Domains. - 8. Existence Theory for p- < 2. - 9. Appendix.
Recenzii
“This book is essentially based on the author’s doctoral thesis … . The book also contains an appendix and references. … The book could be used by graduate students and researchers working on such problems.” (Gheorghe Moroşanu, zbMATH 1526.35002, 2024)
Notă biografică
Textul de pe ultima copertă
This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions.
Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.
Caracteristici
Includes the first proof of the existence of weak solutions of the unsteady p(t,x)-Navier-Stokes equations Provides a comprehensive review of the rapidly expanding field of unsteady problems with variable >exponents Requires only a basic knowledge of functional analysis