Probability in Banach Spaces, 9: Progress in Probability, cartea 35
Editat de Jorgen Hoffmann-Jorgensen, James Kuelbs, Michael B. Marcusen Limba Engleză Paperback – 12 oct 2012
Din seria Progress in Probability
- 15%
Preț: 664.14 lei -
Preț: 380.79 lei - 18%
Preț: 758.72 lei -
Preț: 381.76 lei - 18%
Preț: 888.84 lei - 18%
Preț: 917.09 lei -
Preț: 378.05 lei - 15%
Preț: 503.27 lei -
Preț: 374.71 lei -
Preț: 373.40 lei -
Preț: 378.58 lei - 15%
Preț: 567.88 lei -
Preț: 373.03 lei -
Preț: 373.98 lei -
Preț: 380.62 lei -
Preț: 376.90 lei -
Preț: 374.91 lei - 15%
Preț: 617.72 lei -
Preț: 377.12 lei - 15%
Preț: 630.15 lei - 15%
Preț: 613.94 lei -
Preț: 381.92 lei - 18%
Preț: 918.30 lei - 15%
Preț: 619.75 lei -
Preț: 378.05 lei - 15%
Preț: 615.52 lei -
Preț: 381.92 lei -
Preț: 386.74 lei - 15%
Preț: 609.85 lei - 15%
Preț: 621.80 lei - 18%
Preț: 916.03 lei - 15%
Preț: 622.59 lei - 18%
Preț: 924.39 lei - 15%
Preț: 620.07 lei - 15%
Preț: 568.52 lei -
Preț: 373.40 lei - 15%
Preț: 616.95 lei - 15%
Preț: 612.05 lei -
Preț: 370.26 lei - 15%
Preț: 627.93 lei
Preț: 914.52 lei
Preț vechi: 1115.26 lei
-18% Nou
Puncte Express: 1372
Preț estimativ în valută:
161.80€ • 190.22$ • 141.71£
161.80€ • 190.22$ • 141.71£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461266822
ISBN-10: 1461266823
Pagini: 444
Ilustrații: VII, 431 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Probability
Locul publicării:Boston, MA, United States
ISBN-10: 1461266823
Pagini: 444
Ilustrații: VII, 431 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Probability
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Random Series, Exponential Moments, and Martingales.- Convergence a.s. of rearranged random series in Banach space and associated inequalities.- On the Rademacher series.- On separability of families of reversed submartingales.- Sharp exponential inequalities for the Martingales in the 2-smooth Banach spaces and applications to “scalarizing” decoupling.- Strong Limit Theorems.- Random fractals generated by oscillations of processes with stationary and independent increments.- Some generalized Martingales arising from the strong law of large numbers.- Uniform ergodic theorems for dynamical systems under VC entropy conditions.- GB and GC sets in ergodic theory.- Weak Convergence.- On the central limit theorem for multiparameter stochastic processes.- Une caractérisation des espaces de Fréchet nucléaires.- A weighted central limit theorem for a function-indexed sum with random point masses.- On the rate of convergence in the CLT with respect to the Kantorovich metric.- Burgers’ topology on random point measures.- On the topological description of characteristic functionals in infinite dimensional spaces.- Large Deviations and Measure Inequalities.- Projective systems in large deviation theory II: some applications.- Some large deviation results for Gaussian measures.- A remark on the median and the expectation of convex functions of Gaussian vectors.- Comparison results for the small ball behavior of Gaussian random variables.- Some remarks on the Berg-Kesten inequality.- Gaussian Chaos and Wiener Measures.- On Girsanov type theorem for anticipative shifts.- A necessary condition for the continuity of linear functionals of Wick squares.- Multiple Wiener-Itô integral processes with sample paths in Banach function spaces.- A remark on Sudakov minoration for chaos.-Topics in Empirical Processes, Spacing Estimates, and Applications to Maximum Likelihood Theory.- On the weak Bahadur-Kiefer representation for M-estimators.- Stochastic differentiability in maximum likelihood theory.- A uniform law of large numbers for set-indexed processes with applications to empirical and partial-sum processes.- Bahadur-Kiefer approximation for spatial quantiles.- Maximum spacing estimates: a generalization and improvement on maximum likelihood estimates I.