Parabolic Boundary Value Problems: Operator Theory: Advances and Applications, cartea 101
Autor Samuil D. Eidelman, Nicolae V. Zhitarashuen Limba Engleză Paperback – 24 oct 2012
Din seria Operator Theory: Advances and Applications
- 18%
Preț: 855.99 lei - 18%
Preț: 903.91 lei -
Preț: 386.74 lei - 20%
Preț: 621.28 lei - 18%
Preț: 924.22 lei - 15%
Preț: 623.05 lei - 18%
Preț: 1083.75 lei - 15%
Preț: 622.11 lei - 15%
Preț: 621.17 lei - 20%
Preț: 621.28 lei - 15%
Preț: 619.91 lei - 15%
Preț: 620.86 lei -
Preț: 380.62 lei - 15%
Preț: 624.95 lei - 15%
Preț: 627.93 lei - 15%
Preț: 635.31 lei - 15%
Preț: 621.48 lei - 15%
Preț: 614.41 lei - 18%
Preț: 973.36 lei -
Preț: 369.90 lei - 18%
Preț: 1100.60 lei - 18%
Preț: 699.93 lei - 15%
Preț: 618.50 lei - 15%
Preț: 620.86 lei - 18%
Preț: 1084.98 lei - 18%
Preț: 709.17 lei - 15%
Preț: 623.84 lei - 18%
Preț: 716.49 lei - 18%
Preț: 1080.74 lei - 15%
Preț: 623.05 lei - 18%
Preț: 903.61 lei - 15%
Preț: 637.04 lei -
Preț: 377.84 lei - 18%
Preț: 703.88 lei - 18%
Preț: 918.30 lei
Preț: 562.39 lei
Preț vechi: 661.64 lei
-15% Nou
Puncte Express: 844
Preț estimativ în valută:
99.52€ • 116.70$ • 87.40£
99.52€ • 116.70$ • 87.40£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034897655
ISBN-10: 3034897650
Pagini: 316
Ilustrații: XI, 300 p.
Dimensiuni: 160 x 240 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
ISBN-10: 3034897650
Pagini: 316
Ilustrații: XI, 300 p.
Dimensiuni: 160 x 240 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
I Equations and Problems.- I.1 Equations.- I.2 Initial and boundary value problems.- II Functional Spaces.- II.1 Spaces of test functions and distributions.- II.2 The Hilbert spaces Hs and ?s.- II.3 Banach spaces of Hölder functions.- III Linear Operators.- III.1 Operators of potential type.- III.2 Operators of multiplication by a function.- III.3 Commutators. Green formulas.- III.4 On equivalent norms in ?s(?+n+1,?), ?s(E+n+1,?), and Hs(?+n), s ? 0.- III.5 The spaces $${{\tilde{H}}^{s}}$$ and $${{\tilde{\mathcal{H}}}^{s}}$$.- III.6 Differential operators in the space $${{\tilde{\mathcal{H}}}^{s}}$$.- IV Parabolic Boundary Value Problems in Half-Space.- IV.1 Non-homogeneous systems in the space ?++s(?n+1,?).- IV.2 Initial value and Cauchy problems for parabolic systems in spaces ?s.- IV.3 Model parabolic boundary value problems in $$\bar{\mathbb{R}}_{{ + + }}^{{n + 1}}$$.- IV.4 The model boundary value problemin in $$\bar{\mathbb{R}}_{{ + + }}^{{n + 1}}$$ for general parabolic systems.- IV.5 The model parabolic conjugation problem in classes of smooth functions.- IV.6 Boundary value problem in $$\tilde{\mathcal{H}}_{ + }^{s}(\bar{\mathbb{R}}_{{ + + }}^{{n + 1}},\gamma )$$ for operators in which the coefficients of the highest-order derivatives are slowly varying functions.- IV.7 Conjugation problem for operators in which the coefficients of the highest-order derivatives are slowly varying.- V Parabolic Boundary Value Problems in Cylindrical Domains.- V.1 Boundary value problems in a semi-infinite cylinder.- V.2 Nonlocal boundary value problems. Conjugation problems.- V.3 Boundary value problems in cylindrical domains of finite height.- V.4 Solvability of the parabolic boundary value problems for right-hand sides with regular singularities.- V.5 Greenformula, boundary and initial values of weak generalized solutions.- VI The Cauchy Problem and Parabolic Boundary Value Problems in Spaces of Smooth Functions.- VI.1 Fundamental solutions of the Cauchy problem.- VI.2 The Cauchy problem.- VI.3 Schauder theory of parabolic boundary value problems.- VI.4 Green functions.- VII Behaviour of Solutions of Parabolic Boundary Value Problems for Large Values of Time.- VII.1 Asymptotic representations and stabilization of solutions of model problems.- VII.2 Tikhonov’s problem.- Comments.- References.