Normal Modes and Localization in Nonlinear Systems
Editat de Alexander F Vakakisen Limba Engleză Hardback – 31 ian 2002
Preț: 916.28 lei
Preț vechi: 1117.41 lei
-18%
Puncte Express: 1374
Preț estimativ în valută:
162.01€ • 192.24$ • 140.86£
162.01€ • 192.24$ • 140.86£
Carte tipărită la comandă
Livrare economică 01-15 aprilie
Specificații
ISBN-13: 9780792370109
ISBN-10: 0792370104
Pagini: 294
Ilustrații: VI, 294 p.
Dimensiuni: 178 x 254 x 18 mm
Greutate: 0.74 kg
Ediția:2001 edition
Editura: Springer
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792370104
Pagini: 294
Ilustrații: VI, 294 p.
Dimensiuni: 178 x 254 x 18 mm
Greutate: 0.74 kg
Ediția:2001 edition
Editura: Springer
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
Invariant Manifolds, Nonclassical Normal Modes, and Proper Orthogonal Modes in the Dynamics of the Flexible Spherical Pendulum.- Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems.- Nonlinear Normal Modes in a System with Nonholonomic Constraints.- Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam.- Normal Modes and Boundary Layers for a Slender Tensioned Beam on a Nonlinear Foundation.- The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables.- Spatially Localized Models of Extended Systems.- Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures.- Dynamics of Relative Phases: Generalised Multibreathers.- Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds.- Localization in Nonlinear Mistuned Systems with Cyclic Symmetry.- Mode Localization Induced by a Nonlinear Control Loop.- Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators.- Application of Nonlinear Normal Mode Analysis to the Nonlinear and Coupled Dynamics of a Floating Offshore Platform with Damping.- Performance of Nonlinear Vibration Absorbers for Multi-Degrees-of-Freedom Systems Using Nonlinear Normal Modes.