Multiple Scale and Singular Perturbation Methods
Autor J. K. Kevorkian, J. D. Coleen Limba Engleză Paperback – 2 oct 2011
Preț: 1082.98 lei
Preț vechi: 1320.71 lei
-18% Nou
Puncte Express: 1624
Preț estimativ în valută:
191.61€ • 223.23$ • 167.32£
191.61€ • 223.23$ • 167.32£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461284529
ISBN-10: 146128452X
Pagini: 644
Ilustrații: VIII, 634 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.96 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 146128452X
Pagini: 644
Ilustrații: VIII, 634 p.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.96 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1.1. Order Symbols, Uniformity.- 1.2. Asymptotic Expansion of a Given Function.- 1.3. Regular Expansions for Ordinary and Partial Differential Equations.- References.- 2. Limit Process Expansions for Ordinary Differential Equations.- 2.1. The Linear Oscillator.- 2.2. Linear Singular Perturbation Problems with Variable Coefficients.- 2.3. Model Nonlinear Example for Singular Perturbations.- 2.4. Singular Boundary Problems.- 2.5. Higher-Order Example: Beam String.- References.- 3. Limit Process Expansions for Partial Differential Equations.- 3.1. Limit Process Expansions for Second-Order Partial Differential Equations.- 3.2. Boundary-Layer Theory in Viscous, Incompressible Flow.- 3.3. Singular Boundary Problems.- References.- 4. The Method of Multiple Scales for Ordinary Differential Equations.- 4.1. Method of Strained Coordinates for Periodic Solutions.- 4.2. Two Scale Expansions for the Weakly Nonlinear Autonomous Oscillator.- 4.3. Multiple-Scale Expansions for General Weakly Nonlinear Oscillators.- 4.4. Two-Scale Expansions for Strictly Nonlinear Oscillators.- 4.5. Multiple-Scale Expansions for Systems of First-Order Equations in Standard Form.- References.- 5. Near-Identity Averaging Transformations: Transient and Sustained Resonance.- 5.1. General Systems in Standard Form: Nonresonant Solutions.- 5.2. Hamiltonian System in Standard Form; Nonresonant Solutions.- 5.3. Order Reduction and Global Adiabatic Invariants for Solutions in Resonance.- 5.4. Prescribed Frequency Variations, Transient Resonance.- 5.5. Frequencies that Depend on the Actions, Transient or Sustained Resonance.- References.- 6. Multiple-Scale Expansions for Partial Differential Equations.- 6.1. Nearly Periodic Waves.- 6.2. Weakly Nonlinear Conservation Laws.- 6.3. Multiple-Scale Homogenization.- References.