Meromorphic Dynamics: Volume 2
Autor Janina Kotus, Urba&en Limba Engleză Hardback – 4 mai 2023
Preț: 917.54 lei
Preț vechi: 1066.90 lei
-14% Nou
Puncte Express: 1376
Preț estimativ în valută:
162.34€ • 189.13$ • 141.76£
162.34€ • 189.13$ • 141.76£
Carte disponibilă
Livrare economică 29 decembrie 25 - 12 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009215978
ISBN-10: 1009215973
Pagini: 480
Dimensiuni: 152 x 232 x 34 mm
Greutate: 0.91 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1009215973
Pagini: 480
Dimensiuni: 152 x 232 x 34 mm
Greutate: 0.91 kg
Ediția:Nouă
Editura: Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
Volume II. Preface; Acknowledgments; Introduction; Part III. Topological Dynamics of Meromorphic Functions: 13. Fundamental properties of meromorphic dynamical systems; 14. Finer properties of fatou components; 15. Rationally indifferent periodic points; Part IV. Elliptic Functions: Classics, Geometry, and Dynamics: 16. Classics of elliptic functions: selected properties; 17. Geometry and dynamics of (all) elliptic functions; Part V. Compactly Nonrecurrent Elliptic Functions: First Outlook: 18. Dynamics of compactly norecurrent elliptic functions; 19. Various examples of compactly nonrecurrent elliptic functions; Part VI. Compactly Nonrecurrent Elliptic Functions: Fractal Geometry, Stochastic Properties, and Rigidity: 20. Sullivan h-conformal measures for compactly nonrecurrent elliptic functions; 21. Hausdorff and packing measures of compactly nonrecurrent regular elliptic functions; 22. Conformal invariant measures for compactly nonrecurrent regular elliptic functions; 23. Dynamical rigidity of compactly nonrecurrent regular elliptic functions; Appendix A: A quick review of some selected facts from complex analysis of a one-complex variable; Appendix B: Proof of the Sullivan nonwandering theorem for speiser class S; References; Index of symbols; Subject index.
Descriere
The first monograph to explore the beautiful and rich dynamics of elliptic functions, with an emphasis on ergodic aspects.