Mathematics of Climate Modeling
Autor Valentin P. Dymnikov, Aleksander N. Filatoven Limba Engleză Hardback – mai 1997
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 908.45 lei 43-57 zile | |
| birkhäuser – 14 oct 2011 | 908.45 lei 43-57 zile | |
| Hardback (1) | 913.75 lei 43-57 zile | |
| birkhäuser – mai 1997 | 913.75 lei 43-57 zile |
Preț: 913.75 lei
Preț vechi: 1114.33 lei
-18% Nou
Puncte Express: 1371
Preț estimativ în valută:
161.67€ • 188.34$ • 141.18£
161.67€ • 188.34$ • 141.18£
Carte tipărită la comandă
Livrare economică 19 ianuarie-02 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817639150
ISBN-10: 0817639152
Pagini: 284
Ilustrații: XVI, 264 p.
Dimensiuni: 160 x 241 x 20 mm
Greutate: 0.59 kg
Ediția:1997
Editura: birkhäuser
Locul publicării:Boston, MA, United States
ISBN-10: 0817639152
Pagini: 284
Ilustrații: XVI, 264 p.
Dimensiuni: 160 x 241 x 20 mm
Greutate: 0.59 kg
Ediția:1997
Editura: birkhäuser
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
1. Dynamical Systems. Attractors, Invariant Measures.- 1.1 Metric Spaces. Compactness.- 1.2 Dynamical Systems. Main Properties.- 1.3 Invariant Sets.- 1.4 Classification of Motions.- 1.5 Recurrence of Domains.- 1.6 Measure. Krylov-Bogolyubov Theorem.- 1.7 Dynamical Systems with Invariant Measure.- 1.8 Nonlinear Dissipative Systems.- 1.9 Inertial Manifolds of Dissipative Systems.- 2. Non-Autonomous Dissipative Systems, their Attractor and Averaging.- 2.1 Introduction.- 2.2 Processes and their Attractors. Kernel of Processes, Section of Kernel.- 2.3 Families of Processes and their Attractors.- 2.4 Family of Processes and Semigroups.- 2.5 Averaging of Nonlinear Dissipative Systems. Closeness between Attractors of Original and Averaged Systems.- 2.6 On Closeness of Solutions of Original and Averaged Nonlinear Dissipative Systems on Infinite Time Interval.- 3. Analysis of Barotropic Model.- 3.1. Existence of Global Attractor.- 3.2 Estimate of Dimension of Attractor.- 3.3 Statistical Solutions and Invariant Measures on Attractor.- 3.4 Estimate of Attractor Dimension with Respect to Orography.- 3.5 Galerkin Approximations.- 3.6 Existence of Inertial Manifold.- 4. Discretization of Systems Possessing Attractor.- 4.1 Discretization of Systems Possessing Inertial Manifolds.- 4.2 Time-Space Discretization of Systems Possessing Attractor.- 4.3 Globally Stable Difference Schemes for Barotropic Vorticity Equation.- 5. Numerical Study of Structure of Attractor Generated by Barotropic Equations on Sphere.- 5.1 Equations and Parameters of Model. Methods of Solving of Stationary and Nonstationary Problems.- 5.2 Statistical Stationary Solution and Stationary Points.- 5.3 Lyapunov Exponents and Attractor Dimension.- 5.4 Analysis of Analytical Estimates of Attractor Dimension of Barotropic Atmospheric Equations.- 6. Two-Layer Baroclinic Model.- 6.1 Two-Layer Baroclinic Model.- 6.2 Estimate of Attractor Dimension.- 6.3 Numerical Investigation of Attractor. Characteristics of Two-Layer Baroclinic Model.- 7. Investigation of Structure of Climate Attractors by Observed Data Series.- 7.1. Correlation Dimension of Attractor.- 7.2. Calculation of Lyapunov Exponents.- 7.3 Statistically Independent Degrees of Freedom and Attractor Dimension.- 8. Regimes of Atmosphere Circulation.- 8.1 Definition of Atmosphere Circulation Regimes.- 8.2 Dynamical Theory of Two-Regime Barotropic Circulation.- 8.3. Statistical Theory of Two-Regime Barotropic Circulation.- 8.4 S-Regimes of Atmosphere Circulation.- 9. Solvability of Ocean and Atmosphere Models.- 9.1 Introduction.- 9.2 Solvability of Ocean and Atmosphere Models in Bounded Domains.- 9.3 Solvability of Ocean and Atmosphere Models on Sphere in p-System of Coordinates.