Machine Learning Systems
Autor Jeff Smithen Limba Engleză Paperback – 8 iul 2018
Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app.
Foreword by Sean Owen, Director of Data Science, Cloudera
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
If you're building machine learning models to be used on a small scale, you don't need this book. But if you're a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users.
About the Book
Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You'll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well.
What's Inside
- Working with Spark, MLlib, and Akka
- Reactive design patterns
- Monitoring and maintaining a large-scale system
- Futures, actors, and supervision
Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed.
About the Author
Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https: //medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems.
Table of Contents
- PART 1 - FUNDAMENTALS OF REACTIVE MACHINE LEARNING
- Learning reactive machine learning
- Using reactive toolsPART 2 - BUILDING A REACTIVE MACHINE LEARNING SYSTEM
- Collecting data
- Generating features
- Learning models
- Evaluating models
- Publishing models
- RespondingPART 3 - OPERATING A MACHINE LEARNING SYSTEM
- Delivering
- Evolving intelligence
Preț: 283.47 lei
Preț vechi: 354.33 lei
-20%
Puncte Express: 425
Preț estimativ în valută:
50.19€ • 58.44$ • 43.60£
50.19€ • 58.44$ • 43.60£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781617293337
ISBN-10: 1617293334
Pagini: 275
Dimensiuni: 187 x 233 x 17 mm
Greutate: 0.4 kg
Editura: Manning Publications
ISBN-10: 1617293334
Pagini: 275
Dimensiuni: 187 x 233 x 17 mm
Greutate: 0.4 kg
Editura: Manning Publications
Notă biografică
Jeff Smith builds large-scale machine learning systems using Scala and Spark. For the past decade, he has been working on data science applications at various startups in New York, San Francisco, and Hong Kong. He blogs and speaks about various aspects of building real world machine learning systems.
Descriere
Key Features: * Example-rich guide* Step-by-step guide* Move from single-machine to massive cluster Readers should have intermediate skills in Java or Scala. No previous machine learning experience is required.