Limit Theorems on Large Deviations for Markov Stochastic Processes: Mathematics and its Applications, cartea 38
Autor A.D. Wentzellen Limba Engleză Hardback – 31 oct 1990
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 367.85 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 22 aug 2012 | 367.85 lei 6-8 săpt. | |
| Hardback (1) | 375.07 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 31 oct 1990 | 375.07 lei 6-8 săpt. |
Din seria Mathematics and its Applications
-
Preț: 398.01 lei - 20%
Preț: 613.70 lei -
Preț: 461.04 lei - 20%
Preț: 373.35 lei - 18%
Preț: 702.45 lei - 15%
Preț: 434.03 lei - 18%
Preț: 705.75 lei - 20%
Preț: 737.41 lei - 15%
Preț: 411.63 lei - 15%
Preț: 678.08 lei -
Preț: 471.35 lei -
Preț: 419.52 lei - 18%
Preț: 1014.51 lei - 18%
Preț: 705.56 lei -
Preț: 438.14 lei - 15%
Preț: 508.87 lei - 18%
Preț: 820.79 lei - 15%
Preț: 618.78 lei -
Preț: 462.26 lei - 15%
Preț: 615.63 lei - 15%
Preț: 678.08 lei - 18%
Preț: 1186.02 lei -
Preț: 435.00 lei - 15%
Preț: 420.02 lei -
Preț: 437.94 lei - 15%
Preț: 615.32 lei -
Preț: 430.56 lei - 15%
Preț: 680.49 lei - 20%
Preț: 486.11 lei - 18%
Preț: 702.82 lei - 15%
Preț: 618.03 lei - 15%
Preț: 671.45 lei -
Preț: 378.05 lei - 15%
Preț: 626.52 lei - 15%
Preț: 622.59 lei
Preț: 375.07 lei
Nou
Puncte Express: 563
Preț estimativ în valută:
66.38€ • 77.85$ • 58.20£
66.38€ • 77.85$ • 58.20£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792301431
ISBN-10: 0792301439
Pagini: 176
Ilustrații: XVI, 176 p.
Dimensiuni: 156 x 234 x 13 mm
Greutate: 0.46 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792301439
Pagini: 176
Ilustrații: XVI, 176 p.
Dimensiuni: 156 x 234 x 13 mm
Greutate: 0.46 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
0.1 Problems on large deviations for stochastic processes.- 0.2 Two opposite types of behaviour of probabilities of large deviations.- 0.3 Rough theorems on large deviations; the action functional.- 0.4 Survey of work on large deviations for stochastic processes.- 0.5 The scheme for obtaining rough theorems on large deviations.- 0.6 The expression: k (?) S (?) is the action functional uniformly over a specified class of initial points.- 0.7 Chapters 3 – 6: a survey.- 0.8 Numbering.- 1. General Notions, Notation, Auxiliary Results.- 1.1. General notation. Legendre transformation.- 1.2. Compensators. Lévy measures.- 1.3. Compensating operators of Markov processes.- 2. Estimates Associated with the Action Functional for Markov Processes.- 2.1. The action functional.- 2.2. Derivation of the lower estimate for the probability of passing through a tube.- 2.3. Derivation of the upper estimate for the probability of going far from the sets$$ {{\Phi }_{{{{x}_{0}};\left[ {0,T} \right]}}}\left( i \right),{{\bar{\Phi }}_{{{{x}_{0}};\left[ {0,T} \right]}}}\left( i \right) $$.- 2.4. The truncated action functional and the estimates associated with it.- 3. The Action Functional for Families of Markov Processes.- 3.1. The properties of the functional$$ {{S}_{{{{T}_{1}},{{T}_{2}}}}}\left( \phi \right) $$.- 3.2. Theorems on the action functional for families of Markov processes in Rr. The case of finite exponential moments.- 3.3. Transition to manifolds. Action functional theorems associated with truncated cumulants.- 4. Special Cases.- 4.1. Conditions A – E of § 3.1. – § 3.3.- 4.2. Patterns of processes with frequent small jumps. The cases of very large deviations, not very large deviations, and super-large deviations.- 4.3. The case of very large deviations.- 4.4. Thecase of not very large deviations.- 4.5. Some other patterns of not very large deviations.- 4.6. The case of super-large deviations.- 5. Precise Asymptotics for Large Deviations.- 5.1. The case of the Wiener process.- 5.2. Processes with frequent small jumps.- 6. Asymptotics of the Probability of Large Deviations Due to Large Jumps of a Markov Process.- 6.1. Conditions imposed on the family of processes. Auxiliary results.- 6.2. Main theorems.- 6.3. Applications to sums of independent random variables.- References.