Large Scale Inverse Problems
Editat de Mike Cullen, Robert Scheichl, Stefan Kindermann, Melina A Freitagen Limba Engleză Hardback – 19 aug 2013
The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary.
This collection of survey articles focusses on the large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters.
The book records the achievements of Workshop 2 "Large-Scale Inverse Problems and Applications in the Earth Sciences". It involves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences.
Preț: 655.22 lei
Preț vechi: 720.02 lei
-9%
Puncte Express: 983
Preț estimativ în valută:
115.87€ • 136.86$ • 99.83£
115.87€ • 136.86$ • 99.83£
Carte tipărită la comandă
Livrare economică 16-23 martie
Specificații
ISBN-13: 9783110282221
ISBN-10: 3110282224
Pagini: 216
Dimensiuni: 175 x 246 x 21 mm
Greutate: 0.6 kg
Ediția:1. Auflage
Editura: De Gruyter
Locul publicării:Berlin/Boston
ISBN-10: 3110282224
Pagini: 216
Dimensiuni: 175 x 246 x 21 mm
Greutate: 0.6 kg
Ediția:1. Auflage
Editura: De Gruyter
Locul publicării:Berlin/Boston
Notă biografică
Mike Cullen, MET Office, Exeter, UK; Melina Freitag, University of Bath, UK; Stefan Kindermann, Johann Kepler University Linz, Austria; Robert Scheichl, University of Bath, UK.
Cuprins
AD> The book will contain a selection of expository articles on large scale inverse problems in the earth sciences. These include seven survey and proceeding type articles on inverse problems and data Assimilation techniques, inverse problems in applications such as hydrology, geology, geophysics, weather prediction and imaging. Furthermore there will be reports on filter techniques and solvers for optimisation problems arising from data assimilation and inverse problems.
Contributions:
Roland Potthast, Melina A Freitag: Synergy of inverse problems and data assimilation techniques.
Olaf A. Cirpka, Wolfgang Nowak, Ronnie L. Schwede, Wei Li: Geostatistical Approaches of Inverse Modelling in Subsurface Hydrology.
Amos Lawless: Variational data assimilation for large-scale environmental problems.
Martin Burger, Hendrik Dirks, Jahn Müller: Inverse problems in imaging.
Sebastian Reich: Introduction to ensemble filter techniques for intermittent data assimilation.
Serge Gratton, Philippe Toint: Optimisation methods for data assimilation in geosciences.
Eldad Haber, Lior Horesh, Luis Tenorio: Design in inverse problems.
Contributions:
Roland Potthast, Melina A Freitag: Synergy of inverse problems and data assimilation techniques.
Olaf A. Cirpka, Wolfgang Nowak, Ronnie L. Schwede, Wei Li: Geostatistical Approaches of Inverse Modelling in Subsurface Hydrology.
Amos Lawless: Variational data assimilation for large-scale environmental problems.
Martin Burger, Hendrik Dirks, Jahn Müller: Inverse problems in imaging.
Sebastian Reich: Introduction to ensemble filter techniques for intermittent data assimilation.
Serge Gratton, Philippe Toint: Optimisation methods for data assimilation in geosciences.
Eldad Haber, Lior Horesh, Luis Tenorio: Design in inverse problems.