Cantitate/Preț
Produs

Iterative Learning Control over Random Fading Channels

Autor Dong Shen, Xinghuo Yu
en Limba Engleză Paperback – 26 dec 2025
Random fading communication is a type of attenuation damage of data over certain propagation media. Establishing a systematic framework of design and analysis of learning control schemes, the book deeply studies the iterative learning control for stochastic systems with random fading communication.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 35886 lei  Precomandă
  Taylor & Francis Ltd (Sales) – 26 dec 2025 35886 lei  Precomandă
Hardback (1) 90306 lei  6-8 săpt.
  CRC Press – 22 dec 2023 90306 lei  6-8 săpt.

Preț: 35886 lei

Preț vechi: 44858 lei
-20% Precomandă

Puncte Express: 538

Preț estimativ în valută:
6350 7456$ 5574£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032646435
ISBN-10: 1032646438
Pagini: 358
Dimensiuni: 156 x 234 x 19 mm
Greutate: 0.5 kg
Editura: Taylor & Francis Ltd (Sales)

Cuprins

1. Introduction  SECTION I Known Channel Statistics  2. Learning Control Over Random Fading Channel  3. Tracking Performance Enhancement by Input Averaging  4. Averaging Techniques for Balancing Learning and Tracking Abilities  SECTION II Unknown Channel Statistics  5. Gradient Estimation Method for Unknown Fading Channels  6. Iterative Estimation Method for Unknown Fading Channels  7. Learning-Tracking Framework Under Unknown Nonrepetitive Channel Randomness  SECTION III Extensions of Systems and Problems  8. Learning Consensus with Faded Neighborhood Information  9. Point-to-Point Tracking with Fading Communications  10. Point-to-Point Tracking Using Reference Update Strategy  11. Multi-Objective Learning Tracking with Faded Measurements

Notă biografică

Dong Shen is a Professor at the School of Mathematics, Renmin University of China, Beijing, China. His research interests include iterative learning control, stochastic optimization, and distributed artificial intelligence.
Xinghuo Yu is the Distinguished Professor, a Vice-Chancellor's Professorial Fellow, and an Associate Deputy Vice-Chancellor at the Royal Melbourne Institute of Technology (RMIT University), Melbourne, Australia. He is a Fellow of the Australian Academy of Science, an Honorary Fellow of Engineers Australia, and a Fellow of the IEEE and several other professional associations.