Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms: Nonconvex Optimization and Its Applications, cartea 45
Autor Roman G. Strongin, Yaroslav D. Sergeyeven Limba Engleză Paperback – 10 noi 2013
Din seria Nonconvex Optimization and Its Applications
- 18%
Preț: 912.85 lei - 20%
Preț: 1225.75 lei - 18%
Preț: 1174.75 lei - 18%
Preț: 911.94 lei - 18%
Preț: 1753.42 lei - 18%
Preț: 1177.32 lei - 18%
Preț: 910.42 lei - 18%
Preț: 1494.88 lei - 20%
Preț: 958.01 lei - 18%
Preț: 1179.90 lei - 24%
Preț: 3086.01 lei - 18%
Preț: 1170.20 lei - 20%
Preț: 956.89 lei - 18%
Preț: 919.21 lei - 20%
Preț: 961.50 lei - 15%
Preț: 621.48 lei - 18%
Preț: 913.75 lei - 18%
Preț: 915.29 lei - 18%
Preț: 1174.75 lei - 18%
Preț: 1759.79 lei - 18%
Preț: 1286.35 lei - 18%
Preț: 914.52 lei - 18%
Preț: 1182.77 lei - 15%
Preț: 621.34 lei - 15%
Preț: 621.48 lei - 15%
Preț: 616.28 lei - 18%
Preț: 1770.09 lei - 18%
Preț: 1181.69 lei - 18%
Preț: 916.03 lei
Preț: 927.56 lei
Preț vechi: 1131.17 lei
-18%
Puncte Express: 1391
Preț estimativ în valută:
164.16€ • 191.85$ • 142.52£
164.16€ • 191.85$ • 142.52£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461371175
ISBN-10: 1461371171
Pagini: 732
Ilustrații: XXVIII, 704 p. 1 illus.
Dimensiuni: 155 x 235 x 38 mm
Greutate: 1.01 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
ISBN-10: 1461371171
Pagini: 732
Ilustrații: XXVIII, 704 p. 1 illus.
Dimensiuni: 155 x 235 x 38 mm
Greutate: 1.01 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Preface. Acknowledgements. Part One: Global Optimization Algorithms as Decision Procedures. Theoretical Background and Core Univariate Case. 1. Introduction. 2. Global Optimization Algorithms as Statistical Decision Procedures - The Information Approach. 3. Core Global Search Algorithm and Convergence Study. 4. Global Optimization Methods as Bounding Procedures - The Geometric Approach. Part Two: Generalizations for Parallel Computing, Constrained and Multiple Criteria Problems. 5. Parallel Global Optimization Algorithms and Evaluation of the Efficiency of Parallelism. 6. Global Optimization under Non-Convex Constraints - The Index Approach. 7. Algorithms for Multiple Criteria Multiextremal Problems. Part Three: Global Optimization in Many Dimensions. Generalizations through Peano Curves. 8. Peano-Type Space-Filling Curves as Means for Multivariate Problems. 9. Multidimensional Parallel Algorithms. 10. Multiple Peano Scannings and Multidimensional Problems. References. List of Algorithms. List of Figures. List of Tables. Index.