Geometry V: Minimal Surfaces: Encyclopaedia of Mathematical Sciences, cartea 90
Editat de Robert Osserman Contribuţii de H. Fujimoto, S. Hildebrandt, D. Hoffmann, H. Karcher, L. Simonen Limba Engleză Paperback – 15 dec 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 615.35 lei 43-57 zile | |
| Springer Berlin, Heidelberg – 15 dec 2010 | 615.35 lei 43-57 zile | |
| Hardback (1) | 621.48 lei 43-57 zile | |
| Springer Berlin, Heidelberg – 9 oct 1997 | 621.48 lei 43-57 zile |
Din seria Encyclopaedia of Mathematical Sciences
- 15%
Preț: 618.83 lei - 9%
Preț: 711.57 lei - 15%
Preț: 614.73 lei -
Preț: 371.20 lei - 15%
Preț: 613.49 lei -
Preț: 371.93 lei - 18%
Preț: 915.73 lei - 15%
Preț: 630.29 lei - 18%
Preț: 1074.36 lei - 15%
Preț: 615.35 lei - 18%
Preț: 1069.35 lei - 15%
Preț: 623.22 lei - 15%
Preț: 623.39 lei - 20%
Preț: 601.48 lei - 18%
Preț: 1186.28 lei - 18%
Preț: 1181.14 lei - 18%
Preț: 1081.77 lei - 15%
Preț: 617.72 lei - 18%
Preț: 1082.38 lei -
Preț: 371.00 lei - 18%
Preț: 912.09 lei - 15%
Preț: 619.61 lei - 15%
Preț: 619.75 lei - 18%
Preț: 860.07 lei - 15%
Preț: 618.34 lei - 15%
Preț: 669.29 lei - 18%
Preț: 909.98 lei - 18%
Preț: 702.39 lei - 24%
Preț: 792.80 lei
Preț: 615.35 lei
Preț vechi: 723.94 lei
-15% Nou
Puncte Express: 923
Preț estimativ în valută:
108.89€ • 127.68$ • 95.63£
108.89€ • 127.68$ • 95.63£
Carte tipărită la comandă
Livrare economică 09-23 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642082252
ISBN-10: 3642082254
Pagini: 288
Ilustrații: IX, 272 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of hardcover 1st ed. 1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Encyclopaedia of Mathematical Sciences
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642082254
Pagini: 288
Ilustrații: IX, 272 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of hardcover 1st ed. 1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Encyclopaedia of Mathematical Sciences
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Complete Embedded Minimal Surfaces of Finite Total Curvature.- II. Nevanlinna Theory and Minimal Surfaces.- III. Boundary Value Problems for Minimal Surfaces.- IV. The Minimal Surface Equation.- Author Index.
Textul de pe ultima copertă
Osserman (Ed.) Geometry V Minimal Surfaces
The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka Fujimoto, who obtained the definitive results on the Gauss map of minimal surfaces, reports on Nevanlinna Theory and Minimal Surfaces. Stefan Hildebrandt provides an up-to-date account of the Plateau problem and related boundary-value problems. David Hoffman and Hermann Karcher describe the wealth of results on embedded minimal surfaces from the past decade, starting with Costa's surface and the subsequent Hoffman-Meeks examples. Finally, Leon Simon covers the PDE aspect of minimal surfaces, with a survey of known results both in the classical case of surfaces and in the higher dimensional case. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics.
The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka Fujimoto, who obtained the definitive results on the Gauss map of minimal surfaces, reports on Nevanlinna Theory and Minimal Surfaces. Stefan Hildebrandt provides an up-to-date account of the Plateau problem and related boundary-value problems. David Hoffman and Hermann Karcher describe the wealth of results on embedded minimal surfaces from the past decade, starting with Costa's surface and the subsequent Hoffman-Meeks examples. Finally, Leon Simon covers the PDE aspect of minimal surfaces, with a survey of known results both in the classical case of surfaces and in the higher dimensional case. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics.