Distribution Theory: Convolution, Fourier Transform, and Laplace Transform: de Gruyter Textbook
Autor Gerrit Dijken Limba Engleză Electronic book text – 21 mar 2013
It is suitable for a one-semester course at the advanced undergraduate or beginning graduatelevelor for self-study.
Din seria de Gruyter Textbook
-
Preț: 460.33 lei -
Preț: 351.71 lei - 9%
Preț: 594.74 lei -
Preț: 373.73 lei -
Preț: 384.28 lei - 8%
Preț: 472.75 lei - 8%
Preț: 383.27 lei - 8%
Preț: 483.80 lei - 8%
Preț: 489.64 lei - 23%
Preț: 392.09 lei - 23%
Preț: 717.12 lei - 8%
Preț: 458.33 lei - 8%
Preț: 516.86 lei - 5%
Preț: 345.62 lei - 8%
Preț: 513.35 lei - 19%
Preț: 480.92 lei - 8%
Preț: 354.49 lei - 8%
Preț: 469.19 lei - 8%
Preț: 493.68 lei -
Preț: 220.91 lei -
Preț: 366.26 lei -
Preț: 245.22 lei -
Preț: 338.16 lei -
Preț: 297.86 lei - 19%
Preț: 548.02 lei -
Preț: 318.56 lei - 9%
Preț: 754.11 lei - 5%
Preț: 453.32 lei -
Preț: 338.22 lei -
Preț: 278.59 lei - 9%
Preț: 585.86 lei -
Preț: 307.55 lei -
Preț: 332.96 lei - 8%
Preț: 435.14 lei -
Preț: 526.97 lei - 8%
Preț: 396.92 lei -
Preț: 408.18 lei -
Preț: 441.21 lei -
Preț: 358.55 lei - nou
Preț: 449.58 lei -
Preț: 365.30 lei - 23%
Preț: 619.98 lei -
Preț: 294.75 lei
Preț: 253.77 lei
Puncte Express: 381
Preț estimativ în valută:
44.90€ • 52.93$ • 38.99£
44.90€ • 52.93$ • 38.99£
Indisponibil temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Specificații
ISBN-13: 9783110298512
ISBN-10: 3110298511
Pagini: 117
Editura: De Gruyter
Colecția De Gruyter
Seria de Gruyter Textbook
Locul publicării:Berlin/Boston
ISBN-10: 3110298511
Pagini: 117
Editura: De Gruyter
Colecția De Gruyter
Seria de Gruyter Textbook
Locul publicării:Berlin/Boston
Notă biografică
Gerrit van Dijk, Leiden University, The Netherlands.
Cuprins
AD> Preface 2
1 Definition and first properties of distributions 7
1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10
2 Differentiating distributions 13
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The distributions x-1+ ( 6= 0,-1,-2, . . . )* . . . . . . . . . . 16
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Green's formula and harmonic functions . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Multiplication and convergence of distributions 27
3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Distributions with compact support 31
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31
4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32
4.3 Taylor's formula for Rn . . . . . . . . . . . . . . . . . . . . . 33
4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34
5 Convolution of distributions 36
5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36
5.2 Convolution product of distributions . . . . . . . . . . . . . . 38
5.3 Associativity of the convolution product . . . . . . . . . . . . 44
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45
5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50
5.8 Volterra integral equations of the second kind . . . . . . . . . 52
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 The Fourier transform 57
6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57
6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Plancherel's theorem . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62
6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63
6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65
6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66
6.8 Fourier transform of a tempered distribution . . . . . . . . . 67
6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73
6.12 The heat or diffusion equation in one dimension . . . . . . . . 75
7 The Laplace transform 79
7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79
7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80
7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81
7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84
8 Summable distributions* 87
8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87
8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88
8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89
8.4 Canonical extension of a summable distribution . . . . . . . . 91
8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93
9 Appendix 96
9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96
9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103
Bibliography 108
Index 109
1 Definition and first properties of distributions 7
1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10
2 Differentiating distributions 13
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The distributions x-1+ ( 6= 0,-1,-2, . . . )* . . . . . . . . . . 16
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Green's formula and harmonic functions . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Multiplication and convergence of distributions 27
3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Distributions with compact support 31
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31
4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32
4.3 Taylor's formula for Rn . . . . . . . . . . . . . . . . . . . . . 33
4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34
5 Convolution of distributions 36
5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36
5.2 Convolution product of distributions . . . . . . . . . . . . . . 38
5.3 Associativity of the convolution product . . . . . . . . . . . . 44
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45
5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50
5.8 Volterra integral equations of the second kind . . . . . . . . . 52
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 The Fourier transform 57
6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57
6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Plancherel's theorem . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62
6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63
6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65
6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66
6.8 Fourier transform of a tempered distribution . . . . . . . . . 67
6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73
6.12 The heat or diffusion equation in one dimension . . . . . . . . 75
7 The Laplace transform 79
7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79
7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80
7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81
7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84
8 Summable distributions* 87
8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87
8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88
8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89
8.4 Canonical extension of a summable distribution . . . . . . . . 91
8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93
9 Appendix 96
9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96
9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103
Bibliography 108
Index 109