Descriptive Complexity, Canonisation, and Definable Graph Structure Theory
Autor Martin Groheen Limba Engleză Hardback – 17 aug 2017
Preț: 1158.10 lei
Preț vechi: 1346.62 lei
-14%
Puncte Express: 1737
Preț estimativ în valută:
204.76€ • 242.97$ • 178.03£
204.76€ • 242.97$ • 178.03£
Carte tipărită la comandă
Livrare economică 01-15 aprilie
Livrare express 24-28 februarie pentru 100.50 lei
Specificații
ISBN-13: 9781107014527
ISBN-10: 1107014522
Pagini: 554
Ilustrații: 60 b/w illus.
Dimensiuni: 156 x 233 x 38 mm
Greutate: 0.9 kg
Editura: Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1107014522
Pagini: 554
Ilustrații: 60 b/w illus.
Dimensiuni: 156 x 233 x 38 mm
Greutate: 0.9 kg
Editura: Cambridge University Press
Locul publicării:New York, United States
Cuprins
1. Introduction; Part I. The Basic Theory: 2. Background from graph theory and logic; 3. Descriptive complexity; 4. Treelike decompositions; 5. Definable decompositions; 6. Graphs of bounded tree width; 7. Ordered treelike decompositions; 8. 3-Connected components; 9. Graphs embeddable in a surface; Part II. Definable Decompositions of Graphs with Excluded Minors: 10. Quasi-4-connected components; 11. K5-minor free graphs; 12. Completions of pre-decompositions; 13. Almost planar graphs; 14. Almost planar completions; 15. Almost embeddable graphs; 16. Decompositions of almost embeddable graphs; 17. Graphs with excluded minors; 18. Bits and pieces; Appendix. Robertson and Seymour's version of the local structure theorem; References; Symbol index; Index.
Recenzii
'The book is divided evenly into two parts. Part I gives background and definitions of the main notions, and makes the book self-contained. Many results from descriptive complexity theory, and the author's earlier results, are clearly presented. Part II is devoted to the main theorem about graphs with excluded minors. The book ends with a symbol index and an index.' Pascal Michel, Mathematical Reviews
Descriere
This groundbreaking, yet accessible book explores the interaction between graph theory and computational complexity using methods from finite model theory.