Deep Network Design for Medical Image Computing: Principles and Applications: The MICCAI Society book Series
Autor Haofu Liao, S. Kevin Zhou, Jiebo Luoen Limba Engleză Paperback – 30 aug 2022
This book will help graduate students and researchers develop a better understanding of the deep learning design principles for MIC and to apply them to their medical problems.
- Explains design principles of deep learning techniques for MIC
- Contains cutting-edge deep learning research on MIC
- Covers a broad range of MIC tasks, including the classification, detection, segmentation, registration, reconstruction and synthesis of medical images
Din seria The MICCAI Society book Series
- 31%
Preț: 613.85 lei - 29%
Preț: 792.28 lei - 36%
Preț: 550.47 lei - 39%
Preț: 548.01 lei - 23%
Preț: 689.81 lei - 40%
Preț: 714.92 lei - 40%
Preț: 1004.44 lei - 23%
Preț: 633.65 lei - 40%
Preț: 564.70 lei - 40%
Preț: 655.89 lei - 40%
Preț: 554.79 lei - 27%
Preț: 564.29 lei - 36%
Preț: 609.75 lei - 40%
Preț: 757.36 lei - 35%
Preț: 550.01 lei - 32%
Preț: 562.83 lei
Preț: 477.67 lei
Preț vechi: 845.91 lei
-44%
Puncte Express: 717
Preț estimativ în valută:
84.54€ • 98.80$ • 73.39£
84.54€ • 98.80$ • 73.39£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128243831
ISBN-10: 012824383X
Pagini: 264
Ilustrații: 75 illustrations (30 in full color)
Dimensiuni: 191 x 235 x 19 mm
Greutate: 0.46 kg
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
ISBN-10: 012824383X
Pagini: 264
Ilustrații: 75 illustrations (30 in full color)
Dimensiuni: 191 x 235 x 19 mm
Greutate: 0.46 kg
Editura: ELSEVIER SCIENCE
Seria The MICCAI Society book Series
Cuprins
1. Introduction
2. Deep Learning Basics
3. Classification: Lesion and Disease Recognition
4. Detection: Vertebrae Localization and Identification
5. Segmentation: Intracardiac Echocardiography Contouring
6. Registration: 2D/3D Medical Image Registration
7. Reconstruction: Supervised Artifact Reduction
8. Reconstruction: Unsupervised Artifact Reduction
9. Synthesis: Novel View Synthesis
10. Challenges and Future Directions
2. Deep Learning Basics
3. Classification: Lesion and Disease Recognition
4. Detection: Vertebrae Localization and Identification
5. Segmentation: Intracardiac Echocardiography Contouring
6. Registration: 2D/3D Medical Image Registration
7. Reconstruction: Supervised Artifact Reduction
8. Reconstruction: Unsupervised Artifact Reduction
9. Synthesis: Novel View Synthesis
10. Challenges and Future Directions