Data Clustering with Python: From Theory to Implementation: Chapman & Hall/CRC The Python Series
Autor Guojun Ganen Limba Engleză Hardback – 14 sep 2025
Features:
- Introduction to Python programming fundamentals
- Overview of key concepts in data clustering
- Implementation of popular clustering algorithms in Python
- Practical examples of applying clustering algorithms to datasets
- Access to associated Python code on GitHub
This book is ideal for anyone interested in clustering algorithms, with no prior Python experience required. The complete source code is available at: https://github.com/ganml/dcpython.
Din seria Chapman & Hall/CRC The Python Series
-
Preț: 424.90 lei - 20%
Preț: 416.25 lei - 20%
Preț: 399.72 lei - 20%
Preț: 321.52 lei - 20%
Preț: 347.26 lei -
Preț: 206.45 lei - 20%
Preț: 323.28 lei -
Preț: 437.77 lei - 20%
Preț: 379.55 lei - 20%
Preț: 358.01 lei -
Preț: 371.36 lei -
Preț: 432.86 lei - 15%
Preț: 583.14 lei - 15%
Preț: 482.96 lei -
Preț: 451.71 lei - 15%
Preț: 463.47 lei - 15%
Preț: 422.73 lei - 15%
Preț: 569.15 lei - nou
Preț: 403.43 lei
Preț: 601.07 lei
Preț vechi: 751.33 lei
-20%
Puncte Express: 902
Preț estimativ în valută:
106.45€ • 124.32$ • 92.47£
106.45€ • 124.32$ • 92.47£
Carte tipărită la comandă
Livrare economică 21 februarie-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032971568
ISBN-10: 1032971568
Pagini: 260
Ilustrații: 80
Dimensiuni: 156 x 234 x 19 mm
Greutate: 0.64 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC The Python Series
ISBN-10: 1032971568
Pagini: 260
Ilustrații: 80
Dimensiuni: 156 x 234 x 19 mm
Greutate: 0.64 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC The Python Series
Public țintă
AcademicCuprins
1. Python Programming 101. 2. The NumPy Library. 3. The Pandas Library. 4. The Matplotlib Library. 5. Introduction to Data Clustering. 6. Agglomerative Hierarchical Algorithms. 7. DIANA. 8. The k-means Algorithm. 9. The c-means Algorithm. 10. The k-prototypes Algorithm. 11. The Genetic k-modes Algorithm. 12. The FSC Algorithm. 13. The Gaussian Mixture Algorithm. 14 The KMTD Algorithm. 15. The Probability Propagation Algorithm. 16. A Spectral Clustering Algorithm. 17. A Mean-Shift Algorithm.
Notă biografică
Guojun Gan is an Associate Professor in the Department of Mathematics at the University of Connecticut, where he has been since August 2014. Prior to that, he worked at a large life insurance company in Toronto, Canada for six years and a hedge fund in Oakville, Canada for one year. He earned a BS degree from Jilin University, Changchun, China, in 2001 and MS and PhD degrees from York University, Toronto, Canada, in 2003 and 2007, respectively.
Descriere
Ideal for anyone interested in clustering algorithms, with no prior Python experience required.