Cantitate/Preț
Produs

D-Optimal Matrices: Springer Briefs in Optimizatio, cartea 1

Autor Ilias S. Kotsireas, Syed N. Mujahid, Panos M. Pardalos
en Limba Engleză Paperback – 18 apr 2014
This is the first book devoted to the computational aspects of D-optimal matrices. The monograph presents a compendium of known algorithmic techniques used to search for D-optimal matrices of a specific type and a unique approach in searching for D-optimal matrices as combinatorial optimization problems. The application of each algorithm is illustrated with fully worked examples. New results on D-optimal matrices are also stated and proven.
Citește tot Restrânge

Preț: 32166 lei

Precomandă

Puncte Express: 482

Preț estimativ în valută:
5691 6630$ 4970£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441993434
ISBN-10: 1441993436
Pagini: 104
Dimensiuni: 155 x 235 mm
Ediția:2014
Editura: SPRINGER LONDON
Colecția Springer Briefs in Optimizatio
Seria Springer Briefs in Optimizatio

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

-1. Introduction (statement of the problem, basic definitions, PAF). -2. Properties of D-optimal matrices (determinant, Ehlich's two-circulant construction, symmetries). -3. Algorithms for searching for D-optimal matrices (power spectral density, supplementary difference sets, string sorting, combinatorial optimization).-4. Features of the objective function landscapes for D-optimal matrices. -5. Applications of D-optimal matrices. -6. Bibliographical references.-7. Subject Index.

Caracteristici

There is no book devoted to the computational aspects of D-optimal matrices
Most algorithms used to look for D-optimal matrices are scattered in research papers
Phrasing the problem of searching for D-optimal matrices as a Combinatorial Optimization problem has never been done before in the literature

Descriere

Uniquely devoted to the computational aspects of D-optimal matrices, this book presents a compendium of known algorithmic techniques used to search for D-optimal matrices of a specific type. The application of each algorithm is illustrated with examples.