Computational Learning Theory
Editat de Paul Fischer, Hans U. Simonen Limba Engleză Paperback – 17 mar 1999
Preț: 322.40 lei
Preț vechi: 403.00 lei
-20% Nou
Puncte Express: 484
Preț estimativ în valută:
57.05€ • 66.99$ • 50.07£
57.05€ • 66.99$ • 50.07£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540657019
ISBN-10: 3540657010
Pagini: 324
Ilustrații: X, 299 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:1999
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540657010
Pagini: 324
Ilustrații: X, 299 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:1999
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Lectures.- Theoretical Views of Boosting.- Open Theoretical Questions in Reinforcement Learning.- Learning from Random Examples.- A Geometric Approach to Leveraging Weak Learners.- Query by Committee, Linear Separation and Random Walks.- Hardness Results for Neural Network Approximation Problems.- Learning from Queries and Counterexamples.- Learnability of Quantified Formulas.- Learning Multiplicity Automata from Smallest Counterexamples.- Exact Learning when Irrelevant Variables Abound.- An Application of Codes to Attribute-Efficient Learning.- Learning Range Restricted Horn Expressions.- Reinforcement Learning.- On the Asymptotic Behavior of a Constant Stepsize Temporal-Difference Learning Algorithm.- On-line Learning and Expert Advice.- Direct and Indirect Algorithms for On-line Learning of Disjunctions.- Averaging Expert Predictions.- Teaching and Learning.- On Teaching and Learning Intersection-Closed Concept Classes.- Inductive Inference.- Avoiding Coding Tricks by Hyperrobust Learning.- Mind Change Complexity of Learning Logic Programs.- Statistical Theory of Learning and Pattern Recognition.- Regularized Principal Manifolds.- Distribution-Dependent Vapnik-Chervonenkis Bounds.- Lower Bounds on the Rate of Convergence of Nonparametric Pattern Recognition.- On Error Estimation for the Partitioning Classification Rule.- Margin Distribution Bounds on Generalization.- Generalization Performance of Classifiers in Terms of Observed Covering Numbers.- Entropy Numbers, Operators and Support Vector Kernels.
Caracteristici
Includes supplementary material: sn.pub/extras