Cantitate/Preț
Produs

Computational Fluid Dynamics Techniques

Editat de W.G. Habashi, M.M Hafez
en Limba Engleză Hardback – 22 noi 1995
The progress made in the CFD field mandates a review of new trends and directions, and this volume covers some of the significant contributions made in the last decade in a large number of branches of CFD. Topics include: finite difference, finite volume and finite element methods for steady and unsteady, inviscid and viscous external and internal flows, spanning a wide range of Mach and Reynolds numbers.
Citește tot Restrânge

Preț: 81382 lei

Preț vechi: 112944 lei
-28%

Puncte Express: 1221

Preț estimativ în valută:
14412 16832$ 12520£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9782884490320
ISBN-10: 2884490329
Pagini: 890
Dimensiuni: 174 x 246 mm
Greutate: 2.06 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Public țintă

Professional

Cuprins

Preface, List of Contributors, Section I: Computational Techniques For Transonic Flows, Section II: Computational Techniques For Unsteady Flows, Section III: Computational Techniques For Hypersonic Flows, Section IV: Computational Techniques For The Euler Equations, Section V: Computational Techniques For The Incompressible Navier-Stokes Equations, Section VI: Computational Techniques For The Compressible Navier-Stokes Equations, Section VII: Computational Techniques For Turbulent Flows, Section VIII: Convergence Acceleration Techniques, Section IX: Grid Generation Techniques, Section X: Flow Control And Design Problems, Index

Notă biografică

W.G. Habashi, Professor Concordia University and Director-Industry CERCA (Centre for Research on Computation and its Application), Montreal, Canada. M.M. Hafez, Professor University of California.

Descriere

This volume reviews significant CFD advances from the last decade, covering finite difference, finite volume and finite element methods for steady/unsteady, inviscid/viscous external/internal flows across wide ranges of Mach and Reynolds numbers.