Computational Chemistry for Experimentalists: A Nonspecialist's Guide to Practical and Predictive Simulations
Autor Benjamin G. Janeskoen Limba Engleză Paperback – 29 ian 2026
Regularly updated online tutorials complement the material, providing project-based, real-world training. By bridging theory and practice, this guide serves mid-career professionals, undergraduate and graduate students, and early-career researchers, making computational chemistry approachable and practical for all experimental chemists.
Ben's free online course complimenting this book is available on GitHub:
https://github.com/bjanesko/ComputationalChemistryForExperimentalists
- Provides experimentalists with a simple and accessible on-ramp to computation for non-specialists
- Highlights the idea that computational chemistry’s core ideas, including chemical bonding, hybridization, and molecular structure are part of core chemical knowledge
- Includes relevant equations and algorithmic details
- Enables readers to rapidly acquire the most relevant knowledge
- Includes modules that are paired with online video tutorials, providing real-world-hands-on training using different software packages
Preț: 710.72 lei
Preț vechi: 781.01 lei
-9% Nou
Puncte Express: 1066
Preț estimativ în valută:
125.69€ • 149.03$ • 109.43£
125.69€ • 149.03$ • 109.43£
Carte tipărită la comandă
Livrare economică 23 martie-06 aprilie
Specificații
ISBN-13: 9780443342110
ISBN-10: 0443342113
Pagini: 318
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443342113
Pagini: 318
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. Introduction and Motivation
Section I: Core Modules
2. Molecular Orbitals and Basis Sets
3. Geometry Optimization
4. Orbitals and Densities
5. Dynamics and Conformational Sampling
6. Atomic Charges, Electrostatic Potentials, and Multipole Moments
7. Mean-Field Electronic Structure Approximations
8. Data Processing
Section II: Shared Modules
9. Free Energies of Formation
10. Transition States and Reaction Rates
11. Continuum Solvent
12. Ab Initio Wavefunctions
13. Databases and Machine Learning
Section III: Specific Experiments
14. Ionization Potentials, Electron Affinities, and Redox Potentials
15. Infrared and Raman Spectra
16. NMR Spectra
17. Band Structures
18. pKa
19. Absorption and Emission Spectroscopy
Section IV: Summary Examples
20. Transition Metal Catalysis
21. Drug Design
Section I: Core Modules
2. Molecular Orbitals and Basis Sets
3. Geometry Optimization
4. Orbitals and Densities
5. Dynamics and Conformational Sampling
6. Atomic Charges, Electrostatic Potentials, and Multipole Moments
7. Mean-Field Electronic Structure Approximations
8. Data Processing
Section II: Shared Modules
9. Free Energies of Formation
10. Transition States and Reaction Rates
11. Continuum Solvent
12. Ab Initio Wavefunctions
13. Databases and Machine Learning
Section III: Specific Experiments
14. Ionization Potentials, Electron Affinities, and Redox Potentials
15. Infrared and Raman Spectra
16. NMR Spectra
17. Band Structures
18. pKa
19. Absorption and Emission Spectroscopy
Section IV: Summary Examples
20. Transition Metal Catalysis
21. Drug Design