Cauchy Problem for Differential Operators with Double Characteristics: Non-Effectively Hyperbolic Characteristics: Lecture Notes in Mathematics, cartea 2202
Autor Tatsuo Nishitanien Limba Engleză Paperback – 26 noi 2017
A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Din seria Lecture Notes in Mathematics
- 15%
Preț: 390.10 lei -
Preț: 335.91 lei - 15%
Preț: 424.95 lei - 15%
Preț: 429.29 lei -
Preț: 343.86 lei - 17%
Preț: 389.75 lei -
Preț: 336.34 lei - 15%
Preț: 390.30 lei - 15%
Preț: 425.52 lei - 15%
Preț: 458.65 lei - 15%
Preț: 496.17 lei - 15%
Preț: 460.27 lei -
Preț: 125.75 lei - 15%
Preț: 390.24 lei - 15%
Preț: 426.00 lei -
Preț: 344.37 lei -
Preț: 232.11 lei -
Preț: 345.00 lei -
Preț: 213.10 lei -
Preț: 358.83 lei -
Preț: 372.50 lei - 15%
Preț: 389.87 lei -
Preț: 356.32 lei -
Preț: 340.60 lei -
Preț: 150.24 lei - 15%
Preț: 393.18 lei - 15%
Preț: 391.08 lei - 15%
Preț: 389.37 lei -
Preț: 425.01 lei - 15%
Preț: 425.26 lei - 15%
Preț: 390.35 lei -
Preț: 430.03 lei - 15%
Preț: 389.37 lei - 15%
Preț: 391.26 lei -
Preț: 429.73 lei - 20%
Preț: 432.91 lei -
Preț: 441.48 lei -
Preț: 331.57 lei -
Preț: 270.64 lei -
Preț: 180.85 lei -
Preț: 146.01 lei -
Preț: 323.47 lei -
Preț: 428.75 lei -
Preț: 324.93 lei -
Preț: 318.85 lei -
Preț: 252.01 lei -
Preț: 403.63 lei -
Preț: 413.66 lei - 15%
Preț: 479.88 lei -
Preț: 335.80 lei
Preț: 369.36 lei
Puncte Express: 554
Preț estimativ în valută:
65.41€ • 76.39$ • 56.82£
65.41€ • 76.39$ • 56.82£
Carte tipărită la comandă
Livrare economică 21 februarie-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319676111
ISBN-10: 3319676113
Pagini: 213
Ilustrații: VIII, 213 p. 7 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.32 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3319676113
Pagini: 213
Ilustrații: VIII, 213 p. 7 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.32 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
1. Introduction.- 2 Non-effectively hyperbolic characteristics.- 3 Geometry of bicharacteristics.- 4 Microlocal energy estimates and well-posedness.- 5 Cauchy problem−no tangent bicharacteristics. - 6 Tangent bicharacteristics and ill-posedness.- 7 Cauchy problem in the Gevrey classes.- 8 Ill-posed Cauchy problem, revisited.- References.
Textul de pe ultima copertă
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.
A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigenvalues. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and P µj , where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Caracteristici
Features thorough discussions on well/ill-posedness of the Cauchy problem for di?erential operators with double characteristics of non-e?ectively hyperbolic type Takes a uni?ed approach combining geometrical and microlocal tools Adopts the viewpoint that the Hamilton map and the geometry of bicharacteristics characterizes the well/ill-posedness of the Cauchy problem