Cauchy Problem for Differential Operators with Double Characteristics: Non-Effectively Hyperbolic Characteristics: Lecture Notes in Mathematics, cartea 2202
Autor Tatsuo Nishitanien Limba Engleză Paperback – 26 noi 2017
A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Din seria Lecture Notes in Mathematics
- 15%
Preț: 390.39 lei -
Preț: 336.15 lei - 15%
Preț: 458.96 lei - 15%
Preț: 429.60 lei -
Preț: 344.60 lei -
Preț: 125.75 lei - 15%
Preț: 460.58 lei - 15%
Preț: 390.58 lei - 15%
Preț: 390.52 lei - 15%
Preț: 496.50 lei -
Preț: 336.57 lei - 15%
Preț: 425.24 lei - 17%
Preț: 390.03 lei - 15%
Preț: 425.82 lei - 15%
Preț: 426.28 lei -
Preț: 344.09 lei -
Preț: 232.28 lei -
Preț: 345.00 lei -
Preț: 213.23 lei -
Preț: 359.09 lei - 15%
Preț: 390.14 lei -
Preț: 356.58 lei -
Preț: 340.60 lei -
Preț: 150.34 lei - 15%
Preț: 393.46 lei - 15%
Preț: 391.34 lei - 15%
Preț: 389.63 lei -
Preț: 425.30 lei - 15%
Preț: 425.55 lei - 15%
Preț: 390.64 lei -
Preț: 430.32 lei - 15%
Preț: 389.63 lei - 15%
Preț: 391.55 lei -
Preț: 430.04 lei - 20%
Preț: 433.22 lei -
Preț: 441.48 lei -
Preț: 331.57 lei -
Preț: 270.64 lei -
Preț: 180.85 lei -
Preț: 146.11 lei -
Preț: 323.47 lei -
Preț: 429.06 lei -
Preț: 324.93 lei -
Preț: 318.85 lei -
Preț: 252.01 lei -
Preț: 403.63 lei -
Preț: 413.66 lei - 15%
Preț: 479.88 lei -
Preț: 335.80 lei -
Preț: 455.07 lei
Preț: 369.36 lei
Nou
Puncte Express: 554
Preț estimativ în valută:
65.37€ • 76.66$ • 57.32£
65.37€ • 76.66$ • 57.32£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319676111
ISBN-10: 3319676113
Pagini: 213
Ilustrații: VIII, 213 p. 7 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.32 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3319676113
Pagini: 213
Ilustrații: VIII, 213 p. 7 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.32 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
1. Introduction.- 2 Non-effectively hyperbolic characteristics.- 3 Geometry of bicharacteristics.- 4 Microlocal energy estimates and well-posedness.- 5 Cauchy problem−no tangent bicharacteristics. - 6 Tangent bicharacteristics and ill-posedness.- 7 Cauchy problem in the Gevrey classes.- 8 Ill-posed Cauchy problem, revisited.- References.
Textul de pe ultima copertă
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.
A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigenvalues. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and P µj , where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Caracteristici
Features thorough discussions on well/ill-posedness of the Cauchy problem for di?erential operators with double characteristics of non-e?ectively hyperbolic type Takes a uni?ed approach combining geometrical and microlocal tools Adopts the viewpoint that the Hamilton map and the geometry of bicharacteristics characterizes the well/ill-posedness of the Cauchy problem