Cauchy Problem for Differential Operators with Double Characteristics: Non-Effectively Hyperbolic Characteristics: Lecture Notes in Mathematics, cartea 2202
Autor Tatsuo Nishitanien Limba Engleză Paperback – 26 noi 2017
A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Din seria Lecture Notes in Mathematics
- 17%
Preț: 389.73 lei -
Preț: 340.60 lei -
Preț: 429.99 lei -
Preț: 429.69 lei -
Preț: 405.31 lei -
Preț: 444.13 lei - 15%
Preț: 390.28 lei -
Preț: 432.43 lei -
Preț: 377.68 lei -
Preț: 332.93 lei -
Preț: 335.89 lei -
Preț: 413.66 lei -
Preț: 335.80 lei - 15%
Preț: 390.08 lei -
Preț: 333.17 lei -
Preț: 364.59 lei -
Preț: 304.63 lei -
Preț: 475.55 lei -
Preț: 333.17 lei -
Preț: 405.78 lei -
Preț: 336.98 lei -
Preț: 370.54 lei -
Preț: 369.61 lei -
Preț: 373.40 lei -
Preț: 370.80 lei - 15%
Preț: 461.87 lei -
Preț: 252.01 lei -
Preț: 403.63 lei -
Preț: 455.07 lei - 15%
Preț: 479.88 lei -
Preț: 476.28 lei - 15%
Preț: 485.56 lei -
Preț: 369.12 lei -
Preț: 404.36 lei -
Preț: 368.43 lei -
Preț: 402.20 lei - 15%
Preț: 425.96 lei -
Preț: 403.86 lei - 15%
Preț: 390.21 lei -
Preț: 336.29 lei -
Preț: 480.06 lei -
Preț: 313.64 lei -
Preț: 374.84 lei -
Preț: 304.83 lei - 15%
Preț: 424.92 lei -
Preț: 361.95 lei -
Preț: 313.87 lei -
Preț: 334.37 lei -
Preț: 411.74 lei -
Preț: 313.49 lei
Preț: 369.36 lei
Puncte Express: 554
Preț estimativ în valută:
65.30€ • 78.02$ • 56.57£
65.30€ • 78.02$ • 56.57£
Carte tipărită la comandă
Livrare economică 14-28 martie
Specificații
ISBN-13: 9783319676111
ISBN-10: 3319676113
Pagini: 213
Ilustrații: VIII, 213 p. 7 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.32 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3319676113
Pagini: 213
Ilustrații: VIII, 213 p. 7 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.32 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
1. Introduction.- 2 Non-effectively hyperbolic characteristics.- 3 Geometry of bicharacteristics.- 4 Microlocal energy estimates and well-posedness.- 5 Cauchy problem−no tangent bicharacteristics. - 6 Tangent bicharacteristics and ill-posedness.- 7 Cauchy problem in the Gevrey classes.- 8 Ill-posed Cauchy problem, revisited.- References.
Textul de pe ultima copertă
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.
A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigenvalues. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and P µj , where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Caracteristici
Features thorough discussions on well/ill-posedness of the Cauchy problem for di?erential operators with double characteristics of non-e?ectively hyperbolic type Takes a uni?ed approach combining geometrical and microlocal tools Adopts the viewpoint that the Hamilton map and the geometry of bicharacteristics characterizes the well/ill-posedness of the Cauchy problem