Category Theory and Computer Science
Editat de Eugenio Moggi, Giuseppe Rosolinien Limba Engleză Paperback – 20 aug 1997
Category theory attracts interest in the theoretical computer science community because of its ability to establish connections between different areas in computer science and mathematics and to provide a few generic principles for organizing mathematical theories. This book presents a selection of 15 revised full papers together with three invited contributions. The topics addressed include reasoning principles for types, rewriting, program semantics, and structuring of logical systems.
Preț: 322.61 lei
Preț vechi: 403.26 lei
-20% Nou
Puncte Express: 484
Preț estimativ în valută:
57.09€ • 66.57$ • 50.12£
57.09€ • 66.57$ • 50.12£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540634553
ISBN-10: 354063455X
Pagini: 328
Ilustrații: IX, 319 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:1997
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354063455X
Pagini: 328
Ilustrații: IX, 319 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:1997
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
An introduction to n-categories.- Allegories as a basis for algorithmics.- Separating shape from data.- A factorisation theorem in rewriting theory.- Monads and modular term rewriting.- A 2-categorical presentation of term graph rewriting.- Presheaf models for the ?-calculus.- Categorical modelling of structural operational rules case studies.- Specifying interaction categories.- Shedding new light in the world of logical systems.- Combining and representing logical systems.- A deciding algorithm for linear isomorphism of types with complexity O(nlog 2(n))..- Effectiveness of the global modulus of continuity on metric spaces.- Proof principles for datatypes with iterated recursion.- When Do Datatypes Commute?.- A calculus for collections and aggregates.- Lifting.- General synthetic domain theory — A logical approach (extended abstract).